Draft Analysis of Brownfields Cleanup Alternatives

Redwood Marine Terminal II Debris Cleanup Project

Prepared for:

Humboldt Bay Harbor, Recreation and Conservation District

812 W. Wabash Avenue (14 pt) Eureka, CA 95501-2138 707-441-8855

December 2016 016240.001

Reference: 016240.001

December 2, 2016

Mr. Jack Crider, Executive Director Humboldt Bay Harbor, Recreation and Conservation District 601 Startare Drive Eureka, CA 95501

Subject: Draft Analysis of Brownfield Cleanup Alternatives Report for RMT II Debris Cleanup Project

Dear Mr. Crider:

Attached is the Draft Analysis of Brownfield Cleanup Alternatives (ABCA) Report for the RMT II debris cleanup project. This report is a required element of the US EPA's Brownfields Cleanup Grant application package, and its content and format follow the directions in the FY17 Guidelines for Brownfields Cleanup Grants.

Sincerely,

SHN Engineers & Geologists

Mill & 2rt

Mike Foget, PE Principal and Project Manager

MKF:dla

Enclosures: Draft Analysis of Brownfields Cleanup Alternatives

Draft Analysis of Brownfields Cleanup Alternatives

Redwood Marine Terminal II Debris Cleanup Project

Prepared for:

Humboldt Bay Harbor, Recreation and Conservation District 601 Startare Drive Eureka, CA 95501

Engineers & Geologists 812 W. Wabash Ave. Eureka, CA 95501-2138 707-441-8855

December 2016

QA/QC:MKF

 $\label{eq:linear} \label{eq:linear} \end{tabular} where the linear the linear the linear the linear term of the linear term of linear term$

Table of Contents

Page

Abbr	eviation	s and Acronyms	ii		
1.0	1.0 Introduction and Background				
	1.1	Site Description			
	1.2	Site History			
	1.3	Previous Studies and Remediation Activities	1		
	1.4	Current and Forecasted Climate Conditions			
	1.5	Site Assessment			
		1.5.1 Contaminant Origin	3		
		1.5.2 Assessment Findings			
	1.6	Exposure Pathways Analysis			
		1.6.1 Pathways			
		1.6.2 Potential Receptors			
	1.7	Proposed Redevelopment			
2.0	Clear	nup Levels and Applicable Laws	4		
	2.1	Cleanup Oversight Responsibility			
	2.2	State Cleanup Levels			
	2.3	Applicable Laws and Regulations	5		
3.0	Evalı	ation of Cleanup Alternatives	5		
	3.1	Project Goal.			
	3.2	Alternatives Considered			
		3.2.1 Alternative 1: No Action	6		
		3.2.2 Alternative 2: Store and Cap On Site			
		3.2.3 Alternative 3: Total Removal and Offsite Disposal			
		3.2.4 Alternative 4: Segregation and Offsite Disposal and On Site Remediation			
	3.3	Comparison of Alternatives			
	3.4	Recommended Alternative			
4.0	Refer	ences	9		
	1.0101				

Appendices

A.	2014 Draft ABCA Report
р	D 1 . D'1 C . 1' D . 1

- B. Debris Pile Sampling Results and Screening Levels
- C. Cost Estimates

List of Illustrations

Figures

Follows Page

1.	Project Location	
2.	Projected Tsunami Inundation, Sea Level Rise, and Flooding Extents	
3.	Debris Sites	
Tables		On Page
1.	Rankings for Each Criterion Assigned to the Alternatives	8

Abbreviations and Acronyms

mg/kg	milligram per kilogram
ABCA	Analysis of Brownfield Cleanup Alternatives
AOI	Area of Interest
APN	Assessor's Parcel Number
AST	above-ground storage tank
BGS	below ground surface
BMPs	best management practices
CDBG	Community Development Block Grant
CHHSLs	California Human Health Screening Levels
District	Humboldt Bay Harbor, Recreation & Conservation District
DTSC	California Department of Toxics Control
FTC	Freshwater Tissue Company (FTC)
GHG	Greenhouse gas
GP	Georgia Pacific
HAZWOPER	Hazardous Waste Operations and Emergency Response Standard
HUD	US Department of Housing and Urban Development
LACO	LACO Associates
LP	Louisiana-Pacific
OEHHA	California Office of Environmental Health Hazard Assessment
OSHA	US Department of Labor Occupation Safety & Health Administration
SHN	SHN Engineers & Geologists
RMT II	Redwood Marine Terminal II
RWQCB	North Coast Regional Water Quality Control Board
USDA	US Department of Agriculture
US EPA	US Environmental Protection Agency

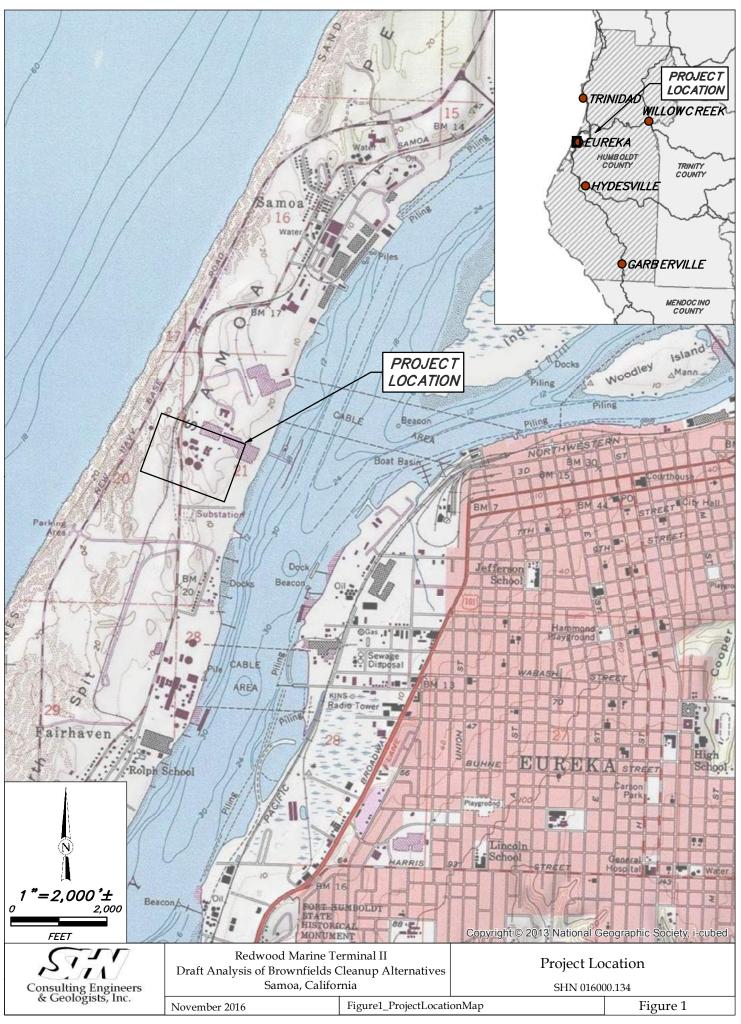
1.0 Introduction and Background

This report contains the Analysis of Brownfield Cleanup Alternatives (ABCA) for three debris stockpiles on the Redwood Marine Terminal II site, which was formerly the Louisiana-Pacific (LP) Pulp Mill facility. The site is located at One TCF Drive in Samoa, California (Figure 1). SHN Engineers & Geologists (SHN) has prepared this report on behalf of and with the approval of the current owner of the site, Humboldt Bay Harbor, Recreation & Conservation District (District). This ABCA includes a brief discussion on the site's background, the nature and extent of the contamination, cleanup standards and regulations, analysis of four cleanup alternatives, and the proposed cleanup alternative.

This ABCA is based on an earlier Draft ABCA dated January 2014 (LACO, 2014). The 2014 Draft ABCA and its laboratory analytical reports are included in Appendix A. In developing this 2016 Draft ABCA, we used volumetric estimates and laboratory analyses from this earlier report, and assume that data and estimates sufficiently characterize the debris piles' contamination and volumes.

1.1 Site Description

The site is located on the Samoa peninsula, a narrow divide between the Pacific Ocean, approximately 800 yards to the west, and the Humboldt Bay, directly to the east. Land use of the site and surrounding properties is industrial and commercial. No residences are in the immediate vicinity; however, the communities of Samoa and Fairhaven are located approximately 1.25 miles from the site to the north and south, respectively (Figure 1; SHN, 2014). The Samoa landfill (a closed Class III disposal site) is located to the west of the facility on the parcel. The site is located on Assessor's Parcel Number (APN) 401-112-021 and covers approximately 72 acres.


1.2 Site History

The first site development occurred in 1964 when a bleached Kraft pulp mill was constructed by Georgia Pacific (GP). The pulp mill, in its original configuration, was in operation between 1965 and 1994 when it was then converted to a chlorine-free process. Multiple owners including LP and Evergreen Pulp operated the mill from 1994 to 2008 (SHN, 2014). Freshwater Tissue Company (FTC) purchased the site in 2009 and planned on reopening the mill; however, they abandoned these plans and began decommissioning equipment, demolishing various buildings, and liquidating assets. Buildings and land uses of the site included offices, pulp warehouses, a machine building, a sand blasting shop, petroleum products distribution and storage, a hazardous waste storage area, diesel aboveground storage tanks, a chemical storage tank farm, a water treatment plant, a "black liquor" processing area, a bleach plant, and a chip conveyor. In August 2013, FTC transferred ownership of the site to the District.

1.3 Previous Studies and Remediation Activities

Many studies have been conducted to characterize the extent of the contamination throughout the site. The majority of these studies occurred before the District became the owner; studies focused on soil and groundwater contamination, and included sampling from numerous boring and monitoring well locations.

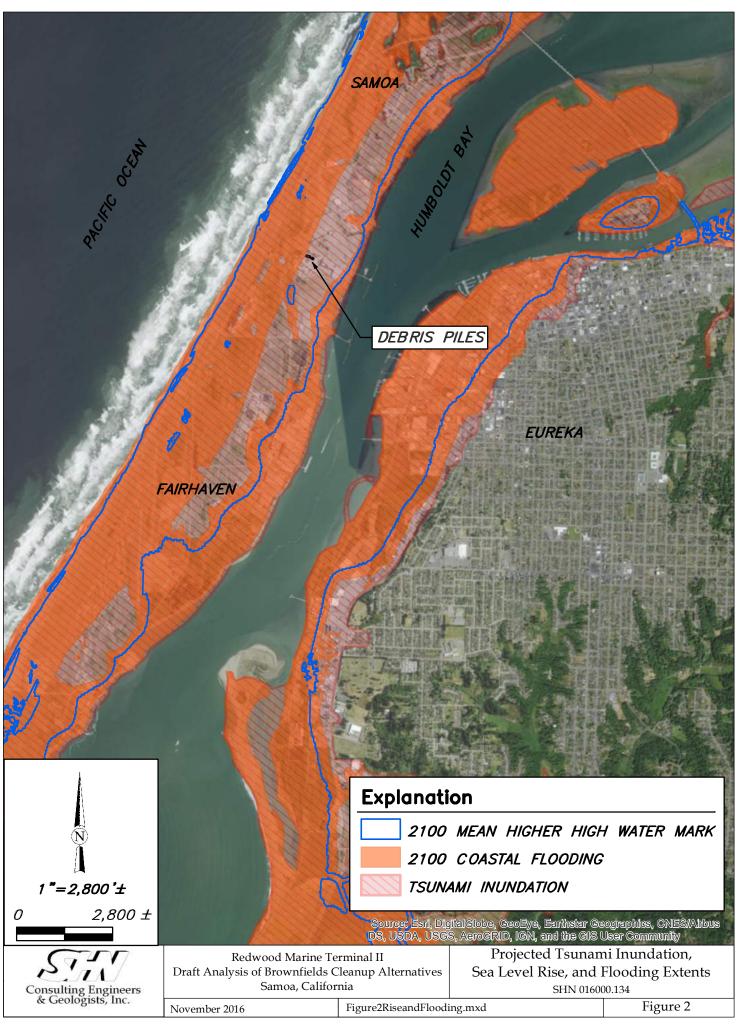
Six studies that provide the majority of site characterization data include:

- 1997 Preliminary Site Investigation (LP, 1997)
- 2006 Site Characterization and Investigation Report (MFG, 2006)
- 2011 Conceptual Site Model (SHN, 2011)
- 2013 Updated Conceptual Site Model (SHN, 2013)
- 2013 Phase I Assessment (LACO, 2013)
- 2014 Phase II Assessment (LACO, 2014)
- 2014 Remedial Action Plan Eastern Half (SHN, 2014)

Remediation activities prior to District ownership have been limited; however, between 1995 and 2003, soil adjacent to the aboveground and underground storage tanks was removed to limit the threat of groundwater contamination (SHN 2014).

In August 2013, the District contacted the United States Environmental Protection Agency (US EPA) to perform an assessment of hazardous materials remaining on the site. From the assessment, the US EPA determined that 1.3 million gallons of caustic pulping liquors were housed in tanks that were either deteriorating or not designed to hold caustic liquids. A 6.8 earthquake off the coast of Humboldt County on March 9, 2014, also caused significant concern about the tanks' structural integrity. Additionally, 20,000 gallons of sulfuric and hydrochloric acid; 10,000 tons of uncontained corrosive sludges; and various other chemicals were stored on site. The US EPA determined that the condition of the tanks and the site's proximity to Humboldt Bay necessitated an emergency response (US EPA 2013). Removal of hazardous and caustic liquors and sludges was completed under the direction of the US EPA throughout 2014.

1.4 Current and Forecasted Climate Conditions


The current climate conditions and environmental hazards that impact the site include tsunamis, high precipitation rates, and shallow groundwater. The entire Samoa peninsula is located in a tsunami evacuation zone and the site may be inundated in the event of a tsunami or seismically generated seiche in Humboldt Bay (Figure 2).

Humboldt Bay receives an annual average rainfall of 38 inches, with 90% occurring between October and April (Humboldt County, 2009). The runoff associated with these rain events can facilitate the transport of contaminants.

Groundwater monitoring of the 26 monitoring wells on site has been conducted since 1997. The *Conceptual Site Model* and *Remedial Action Plan – Eastern Half* reports, prepared by SHN, summarize this groundwater monitoring and conclude that the groundwater surface at the site ranges between 12 and 16 feet below ground surface (BGS) in an unconfined aquifer, which is at groundwater elevations between 5 and 9 feet NAVD88 (SHN, 2011; SHN, 2013; SHN, 2014).

The forecasted climate change conditions that could affect the site are sea level rise and changing flood zones. Sea level rise will impact a large portion of the Samoa peninsula and potentially impact the current stockpile locations (Figure 2). Currently, a portion of the site is located within the projected coastal flood zone (Humboldt County GIS, Figure 2). With sea level rise, this flood zone will inundate a greater portion of the site potentially leading to greater environmental impacts from contaminated areas on site if the contaminated areas are not contained, secured, or removed.

1.5 Site Assessment

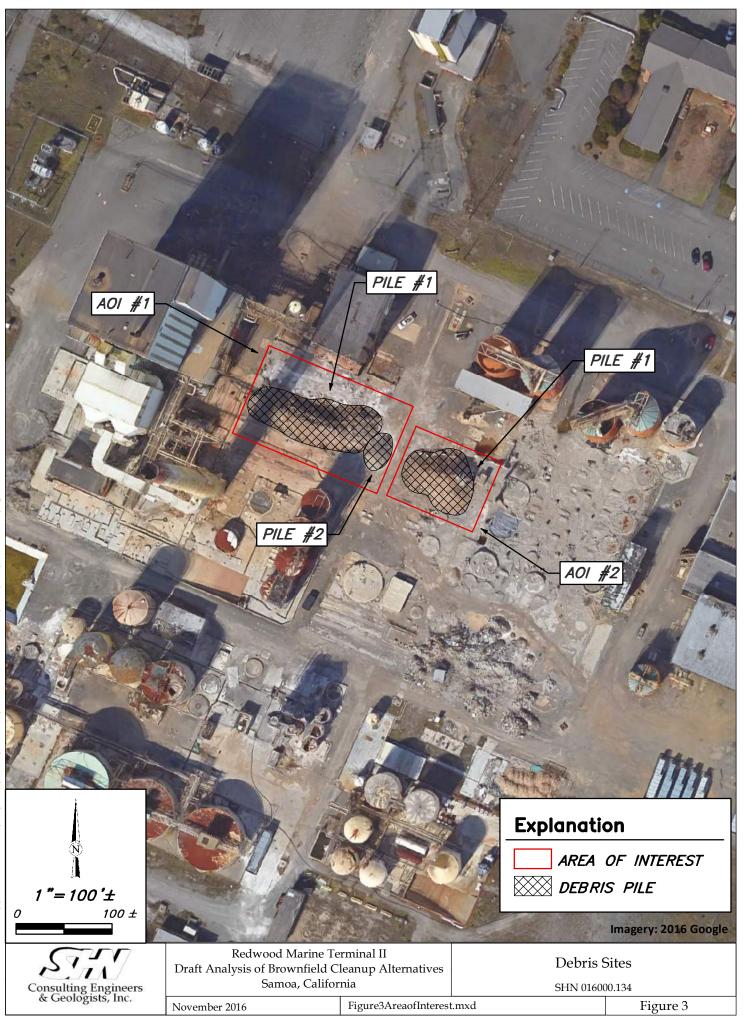
1.5.1 Contaminant Origin

Demolition by FTC of Recovery Boilers 1 and 2, above ground storage tanks (ASTs), and a digester occurred between 2011 and 2012 (LACO, 2014). This work created demolition debris that remains at the site in three stockpiles (Figure 3). Debris from the ASTs and the digester is located in stockpile designated Area of Interest #1 (AOI #1) and debris from the recovery boilers is located in AOI #2. Based on the previous uses of the structures, the following contaminants may persist in the debris (LACO, 2014):

- Asbestos
- Boiler smelt
- Heavy metals
- Heavy-range petroleum hydrocarbons

1.5.2 Assessment Findings

In December 2013, District consultants conducted field visits and performed stockpile sampling to determine the extent of the debris piles, to characterize the material makeup, and to analyze contamination concentrations (LACO, 2014). The analyses documented high levels of heavy metals and total petroleum hydrocarbons, and elevated pH. Of particular concern is high lead concentrations (2,300 to 33,000 milligrams per kilogram [mg/kg]) found in debris associated with ASTs and the digester. The sources and composition of the debris were described as mixtures of concrete, brick, metal, tile, sand, gravel, and wood. An initial estimate of consolidated volume of material was estimated to be approximately 2,400 cubic yards. The report, with detailed results of the analysis and sampling methodology, is included in Appendix A. A summary of the sampling results compared with regulatory levels is included in Appendix B. A map indicating locations of the Areas of Interest (AOI) is included as Figure 3.


1.6 Exposure Pathways Analysis

1.6.1 Pathways

The debris piles on the former pulp mill site are within the southern portion of the town of Samoa, and within 1,200 feet of Humboldt Bay and aquaculture development. The potential for target area exposure is from three types of pathways: windblown contaminants, contaminated storm water runoff, and contaminated groundwater.

During winter storms, wind is generally from the south, which tends to blow north towards the Town of Samoa, and has the potential to transport contaminated dust and rain (Humboldt County, 2002). Storm water runoff from the site has the potential to flow to Humboldt Bay and its oyster industry, potentially transporting contaminants from the three contaminated stockpiles. Additionally, contaminated storm water runoff has the potential to infiltrate into shallow groundwater. Once in Humboldt Bay, contaminants can bioaccumulate in aquatic life and lead to harmful contaminant levels in food sources. Contaminated storm water runoff that does not flow to Humboldt Bay may also travel to the Pacific Ocean through an ocean outfall connected to the facility drainage system.

1.6.2 Potential Receptors

Potential ecological receptors for the site are shellfish and other commercially-grown organisms in Humboldt Bay, and other aquatic life that would contact stormwater runoff or seepage from groundwater. Potential human receptors for the site are children and adults in downwind communities, and adults in construction, excavation, or other industrial settings. Potential indirect receptors include aquatic organisms that ingest sediment containing heavy metals that bioaccumulate in tissure, and people who ingest these organisms (fish and shellfish).

1.7 Proposed Redevelopment

In September 2015, the District submitted an Initial Study/Draft Mitigated Negative Declaration for the Redwood Marine Terminal II (RMT II) Costal Development Permit/Condition Use Permit (Planwest Partners, Inc., 2015). The plans are to renovate the existing facilities and infrastructure on the site, with no expansion of existing capacity. In July 2016, the Humboldt County Board of Supervisors showed support for the District's vision by voting to ease zoning restrictions along Humboldt Bay, allowing commercial opportunities such as aquaculture, biomass conversion, and renewable (solar) energy. Currently, contaminated debris remains at RMT II, which limits use on about one-third of the site, but one tenant is making use of a portion of the site, raising oyster seed. The District and the County intend to continue developing the aquaculture industry in Humboldt Bay, and maintaining its high water quality is critical to that industry.

The District has been working with Humboldt County on several recent Federal grants to assess the potential for economic developments on the Samoa peninsula, primarily the RMT II facility. These grants include a Department of Housing and Urban Development (HUD) Community Development Block Grant (CDBG), and a US Department of Agriculture (USDA) economic development grant.

2.0 Cleanup Levels and Applicable Laws

2.1 Cleanup Oversight Responsibility

Two agencies take primary responsibility for oversight of the cleanup activities: the North Coast Regional Water Quality Control Board (RWQCB) and the California Department of Toxics Control (DTSC). Because the facility is already an active RWQCB site, the RWQCB will most likely oversee the cleanup.

2.2 State Cleanup Levels

Cleanup levels in California are based on either site-specific risk assessments or on regulatory guidelines. The two guidance documents used in the site's region are the Environmental Screening Levels (ESLs) developed by the RWQCB, and the California Human Health Screening Levels (CHHSLs) developed by the California Office of Environmental Health Hazard Assessment (OEHHA). Both screening levels will be used during cleanup activities to ensure protection of human and environmental health. The screening levels for the contaminants of concern found in the debris are included in Appendix B and compared against the analytical data.

2.3 Applicable Laws and Regulations

The cleanup operation is subject to various laws and regulations pertaining to remediation of hazardous substances. These include, but are not limited to the:

- Health and Safety Code
- California Water Code
- Federal Small Business Liability Relief and Brownfields Revitalization Act
- Federal Davis-Bacon Act
- Federal Resource Conservation and Recovery Act
- California Code of Regulations Title 22
- RWQCB regulations
- Humboldt County laws

An additional regulation that pertains to worker safety is the US Department of Labor Occupation Safety & Health Administration (OSHA) Hazardous Waste Operations and Emergency Response Standard (HAZWOPER) 29 CFR 1910.120.

All regulations will be followed by the contractors involved in the cleanup. Additionally, permits will be obtained for waste transport and disposal (as applicable).

3.0 Evaluation of Cleanup Alternatives

3.1 Project Goal

The District's goals are to:

- 1. limit heavy metal and synthetic organic compounds exposure to the environment and people, and
- 2. develop the site as part of the new RMT II complex, leasing space for industrial uses.

Based on previous site assessments, contamination exists in the debris piles exceeding regulatory screening levels. These piles occupy an extensive and central area of the site. The goal of the project is to limit environmental impacts associated with the three debris stockpiles, in accordance with applicable regulatory guidelines, and to mitigate hazards to non-harmful levels to construction workers and future tenants of the site.

3.2 Alternatives Considered

Four cleanup alternatives are presented, which range from leaving the debris piles in place to complete removal. Any alternative must successfully reduce exposure by remediating and decreasing contamination on site. The four alternatives indentified as being potentially feasible are:

- 1. No Action
- 2. Store and Cap On Site
- 3. Total Removal and Offsite Disposal
- 4. Segregation and Offsite Disposal and On site Remediation

These four alternatives are evaluated for effectiveness, implementability, cost, and carbon emissions and climate change. The effectiveness of an alternative is based on its ability to meet the project goal in terms of clean up levels and protection of people and the environment. Implementability assesses the effort and potential barriers to an alternative, including technical and permitting/administration challenges. Costs include estimates of personnel time, contractors time and equipment, laboratory analyses, and transport and disposal fees. Carbon emissions and climate change are analyzed through an alternative's creation of greenhouse gases, and resilience to sea level rise and severe weather.

3.2.1 Alternative 1: No Action

The no action alternative leaves the three debris piles in place. No corrective actions would take place and the debris would remain vulnerable to wind, rain, and flooding.

Effectiveness: This alternative does not meet the project goal. Contaminants would remain on site and concentrations would not be reduced below screening levels. Human and environmental risks would remain and development of the site would not be possible.

Implementability: There are no barriers to this alternative and therefore could be implemented with no effort.

Cost: There are minimal costs associated with this alternative.

Emissions and Climate Change Impact: This alternative provides no resilience to the climate change impacts discussed in Section 1.4. Additionally, flooding from intense storms would erode the debris piles and spread contamination throughout the site and into the bay or ocean. Greenhouse gas (GHG) emissions would not be impacted by this alternative because no trucking or excavation would be involved.

3.2.2 Alternative 2: Store and Cap On Site

This alternative requires reopening one of the cells in the Samoa landfill. The landfill is located on the parcel less than 2,500 feet from the debris piles. The top sand layer would be removed, the debris would be placed according to minimum slope requirements, and a compacted clay cap layer would be installed.

Effectiveness: This alternative does not meet the project goals. Even with a compacted clay cap, the landfill would still be located in a tsunami zone, and would be subject to sea level rise and high groundwater levels.

Implementability: Permitting would be a high barrier to implementing this alternative. The closed Samoa landfill was a Class III landfill that did not accept hazardous waste. The high levels of metals and hydrocarbons in the debris could potentially require a Class I permitted landfill. The possibility obtaining Class I permitting for reopening and reclassifying the landfill is extremely unlikely. Additionally, the landfill is located in the coastal zone and would require approval of the Coastal Commission and a coastal development permit.

Cost: The costs associated with this alternative include: transport of the material from its current location to the Samoa landfill, preparation of the existing landfill cell, restoration of the cap to meet regulations, installation and monitoring groundwater wells, and engineering and permitting costs.

The total cost estimated in 2014 was \$300,000 (Appendix C). However, having recently completed similar work, costs are very likely to be much higher.

Emissions and Climate Change Impact: A small amount of greenhouse gas emissions would be created when the stockpile is transferred from its current site to the Samoa landfill. The landfill is located in the sea level rise zone, the 100-year flood zone, and the tsunami evacuation zone. This area is very unfavorable for permanent disposal and would not be resilient to climate change.

3.2.3 Alternative 3: Total Removal and Offsite Disposal

This alternative involves the total removal and disposal of the debris piles. The piles would be excavated, loaded, transported, and disposed of by qualified contractors and in accordance with applicable local, state and Federal regulations. Depending on results of waste characterization, the piles may be segregated into material designated for Class I, II or III waste facilities.

Effectiveness: The total removal of the three debris piles would eliminate the sources of contamination and eliminate site-specific exposure pathways to the environment and people, thus meeting the project goal. It is effective in both the long and short term.

Implementability: This alternative's ease of implementation is moderately difficult. The debris piles would need additional waste characterization so materials are directed to the proper class of landfill. Waste characterization requires extensive sampling and experience in selecting representative samples. Once characterized and separated, excavators would load transport trucks with the segregated debris and transfer it to the disposal sites.

Cost: Costs associated with this alternative include waste characterization, segregation of materials, transport of material, and disposal of material. Total removal of the piles to a Class I landfill was estimated to cost \$921,000 in 2014 (Appendix C); however, if waste characterization results in AOI #1 being Class II material, the estimated cost is reduced to \$745,000 (Appendix C).

Emissions and Climate Change Impact: This alternative would create the most GHG emissions due to the total excavation and transport of the debris piles. The spread of contamination from changing climate conditions would be eliminated by this alternative because the source of contamination would be completely removed from the site.

3.2.4 Alternative 4: Segregation and Offsite Disposal and On Site Remediation

This alternative involves characterizing and segregating the debris piles materials based on hazard level and type of contamination. Materials within the stockpile that are characterized to have no contaminants of concern and are suitable for industrial fill material would be used on site. Those materials characterized as containing petroleum hydrocarbons and/or other synthetic organic compounds would be secured for bioremediation. Once remediated to below screening levels, the material would also be used as industrial on site fill. The remaining material that is contaminated with heavy metals would be segregated based on the class of landfill that can accept it, loaded into dump trucks, and transported to Class I, II, or III facilities.

Effectiveness: This alternative meets the project goals by either removing contaminants or transforming them so that environmental and public health is maintained and the exposure risks of contaminants are greatly reduced.

Implementability: This alternative requires an appropriate waste classification plan to be developed, approved by regulating agencies, and implemented. Similar plans have been implemented at sites around the country. There is a need for fill material on the site, which can be met by remediated material. During the bioremediation process, material will be stored properly on site, applying the appropriate best management practices (BMPs) as needed. Materials containing heavy metals cannot be adequately remediated on site, and will be transported and disposed. Because on site bioremediation will require assistance and approval from regulating agencies, there are no significant barriers to implementing this alternative.

Cost: Costs associated with this alternative include coordinating with regulatory agencies, waste characterization, segregation of materials, and transport and disposal of material. Estimated costs are highly dependent on the results of additional waste characterization, but based on 2014 data, estimated costs are approximately \$300,000.

Emissions and Climate Change Impact: The GHG emissions created from this alternative are from the transport of the material on and off site, and from heavy equipment used to handle materials during bioremediation. These emissions will be less than those associated with total removal, due to a portion of the material remaining on site. Removing or transforming all contaminated material will greatly reduce exposure pathways that occur during sea level rise and other conditions due to climate change.

3.3 Comparison of Alternatives

The four alternatives were compared based on the four criteria of effectiveness, implementability, cost, and emissions and climate change impact. Based on the narrative for each alternative in Section 3.2, a numerical ranking (1 to 3) was assigned for each criterion where 1 is the lowest rating, and 3 is the highest rating. The preferred alternative has the highest combined score. The assigned ranks are summarized in Table 1.

Table 1 Rankings for Each Criterion Assigned to the Alternatives ¹ Redwood Marine Terminal II Cleanup Project					
Alternative	Effectiveness	Implementability	Cost	Emissions and Climate Change Impact	Score
1. No Action	1	1	3	2	7
2. Store and Cap On Site	1	1	1	2	6
3. Total Removal, Offsite Disposal	3	3	1	1	8
4. Segregation, Offsite Disposal, On Site Remediation	3	2	2	3	10
1. A numerical ranking (1 to 3) was assigned for each criterion where 1 is the lowest rating, and 3 is the highest rating.					

Effectiveness is a primary criterion and only those alternatives that are effective are considered. Alternative 3, removal and disposal of all of the material, meets the project goals. It is relatively easy to implement; however, its costs and greenhouse gas emission impacts are high. Alternative 4, segregation and offsite disposal and on site remediation, is as effective as Alternative 3; however, the costs are less due because fewer tons of materials are transported and disposed at Class I or II landfills. Additionally, climate change impacts are less than those of Alternative 3, also due to reduced transportation.

3.4 Recommended Alternative

Alternative 4, segregation and offsite disposal and on site remediation, is the recommended alternative for cleanup of the debris piles at RMT II. It fulfills the project goals and will be effective in significantly decreasing environmental and public health risks.

4.0 References

Humboldt County. (2009). "Harbor Safety Plan of the Humboldt Bay Area." Mandated by Lempert-Keene-Seastrand Oil Spill Prevention and Response Action of 1990. Eureka, CA: County.

Humboldt County. (2002). "General Plan Update - Natural Resources and Hazards Report." Eureka, CA: County.

LACO Associates Inc. (2014). "Draft Analysis of Brownfield Cleanup Alternatives". Redwood Terminal 2 Debris Piles. Eureka, CA: LACO.

Planwest Partners, Inc. (2015). "Initial Study/ Draft Mitigated Negative Declaration for Redwood Marine Terminal II Coastal Development Permit/ Conditional Use Permit." Arcata, CA: Planwest.

SHN. (2011). "Conceptual Site Model". Former Louisiana-Pacific Pulp Mill. Eureka, CA: SHN.

--. (2013). "Updated Conceptual Site Model". Former Louisiana-Pacific Pulp Mill. Eureka, CA: SHN.

--. (2014). "Remedial Action Plan – Eastern Half". Former Louisiana-Pacific Pulp Mill. Eureka, CA: SHN.

US EPA. (2013). "Pollution/Situation Report #1." NR: US EPA.

Appendix A 2014 Draft ABCA Report

Draft Analysis of Brownfields Cleanup Alternatives

Redwood Terminal 2 Debris Piles Samoa Peninsula Humboldt County, California

January 2014

Prepared For: County of Humboldt

Prepared By: LACO Associates, Inc. 21 W. 4th Street Eureka, California 95501 707 443-5054

Project No. 7174.28

advancing the quality of life for generations to come

Design Planning Engineering Geology and Geotechnical Environmental Science Materials Testing Survey Drilling

800 515-5054 www.lacoassociates.com Eureka | Ukiah | Santa Rosa

TABLE OF CONTENTS

1.0	INTR	ODUCTION AND BACKGROUND
	1.1	Site Location3
	1.2	Previous Property Uses and any Previous
		Cleanup/Remediation
	1.3	Site Assessment Findings4
		1.3.1 Need for Assessment4
		1.3.2 Debris Measurement and Characterization4
		1.3.3 Waste Sampling and Testing Methodology5
		1.3.4 Preliminary Waste Testing Results5
	1.4	Project Goal
2.0	APP	LICABLE REGULATIONS AND CLEANUP STANDARDS6
	2.1	Cleanup Oversight Responsibility
	2.2	Cleanup Standards for Major Contaminants6
	2.3	Laws and Regulations Applicable to the Cleanup6
3.0	EVA	LUATION OF CLEANUP ALTERNATIVES
	3.1	Cleanup Alternatives Considered7
		3.1.1 Alternative #1: Cover and Prevent Access7
		3.1.2 Alternative #2: Full Removal and Disposal.8
		3.1.3 Alternative #3: Partial Removal and
		Disposal, On-site Reuse of Non-hazardous
		W aste
	3.2	Cost Estimate of Cleanup Alternatives8
		3.2.1 Effectiveness

	3.2.2	Implementability	9
	3.2.3	C o s t	9
3.3	Recomm	ended Cleanup Alternative1	0

Figures

Figure 1	Regional Map
Figure 2	Site Map

Appendix 1

Site Photos

Appendix 2

Laboratory Testing Results

Appendix 3

Laboratory Testing Results Summary Table

Appendix 4

Cost Comparisons Table

1.0 INTRODUCTION AND BACKGROUND

1.1 Site Location

The project site is located on the Humboldt Bay Harbor, Recreation & Conservation District's (HBHRCD) Redwood Terminal 2 property, located at 1 TCF Drive, and near the unincorporated community of Samoa, California (hereinafter referred to as "Subject Property"; see Figure 1). The Subject Property comprises approximately 71.8 acres and is located on Assessor's Parcel Number (APN) 401-112-021. The Subject Property is identified as being located within the California coastal zone. The project site under analysis in this document consists of two Areas of Interest (AOIs); AOI 1 contains two debris piles and AOI 2 contains one debris pile. Collectively, the area containing the three debris piles are referred to in this analysis as the "Site," which totals approximately 9,250 square feet (see Figure 2).

1.2 Previous Property Uses and any Previous Cleanup/Remediation

Historical land use research, anecdotal sources, and interviews with stakeholders contacted as part of a May 2013 Phase I Environmental Site Assessment of the Subject Property by LACO Associates (LACO) indicate that the Subject Property was vacant and undeveloped until a 500-ton/day bleached Kraft pulp mill was constructed by Georgia Pacific (GP) between 1963 and 1965. The pulp mill was operational between 1965 and 1994, at which time the mill was converted to a chlorine free process. The Subject Property underwent ownership change in 1973 when GP was forced to divest the mill site to Louisiana Pacific (LP). The Subject Property was under multiple ownership regimes between the late 1990s and 2009, when it was purchased by Freshwater Tissue Company (FTC). FTC scuttled plans to reopen the mill in 2010, and began the process of dismantling the mill and liquidating mill assets. The HBHRCD took possession of the Subject Property in the third quarter of 2013.

Buildings and features historically located on the Subject Property include office structures, pulp warehouses, shops, stores, a machine building, a sand blasting shop, petroleum product distribution and storage, a hazardous waste storage area, multiple diesel Aboveground Storage Tanks (ASTs), a chemical storage tank farm, a water treatment plant and leach field, a recausticizing area, a black liquor processing area, a bleach plant, a chip conveyor, and an outdoor storage area referred to as the "boneyard".

The U.S. Environmental Protection Agency (US EPA) is scheduled to coordinate the removal of approximately four million gallons of black liquor from the former Kraft pulp processing facility, under an emergency response action, in February 2014.

1.3 Site Assessment Findings

1.3.1 Need for Assessment

In the period between 2011 and 2012, the Digester, ASTs, and Recovery Boilers 1 and 2, previously facilities integral to the Kraft pulp process at the former LP Pulp Mill, were demolished by Freshwater Tissue Company. Three piles of demolition debris remain on the Site. Based on correspondence with Jack Crider, CEO of the HBHRCD, and Jim Lund, former operator of the Kraft pulp mill facility, these debris piles contain constituents of concern (COCs) associated on the previous uses of the demolished structures. According to Mr. Lund, the following deleterious materials may be present at the Site:

- Heavy metals
- Heavy-range Petroleum Hydrocarbons
- Asbestos
- Boiler smelt, which is primarily sodium sulfide and sodium carbonate

As part of a large clean-up effort of the former LP Pulp Mill (now known as Redwood Terminal 2), HBHRCD and the County of Humboldt are seeking funding assistance from the US EPA to clean up the debris piles.

1.3.2 Debris Measurement and Characterization

On December 12, 2013, LACO conducted a field visit to the Site to measure the three debris piles and develop an estimate of volume for the purpose of developing a debris sampling plan. LACO also developed an estimate of the total weight of the three debris piles, to develop preliminary cost estimates for transport and off-site disposal. LACO field staff roughly characterized the material makeup of the piles through visual estimation of percentage of each major component (e.g., concrete, iron piping). An estimate of percent solids versus voids was also made. Unit weight of each major component was based on unit weight information from "Weights of Building Materials, Agricultural Commodities, and Floor Loads for Buildings," published by the Penn State College of Agricultural Sciences. The estimated total weight was calculated based on the estimated volume of each major component multiplied by the standardized unit weight of the component. The total estimated volume and weight will be used support estimating the cost for loading, transportation, and disposal.

- AOI 1 contains debris from the demolition from Recovery Boilers 1 and 2. The debris in AOI 1, Pile 1 is roughly characterized as approximately 94 percent blocky or crushed/disaggregated concrete, 1,5 percent metal, 1.5 percent brick, and 3 percent wood material. The total estimated volume of this debris pile is 1,182 cubic yards; the total estimated weight is 2,379 tons.
- AOI 1, Pile 2 is characterized as roughly 87 percent sand and gravel, 7 percent concrete, 1.5 percent metal, 1.5 percent brick, and 3 percent wood material. The total estimated volume of this debris pile is 141 cubic yards; the total estimated weight is 201 tons.
- AOI 2, Pile 1 contains debris from the demolition of the Digester and ASTs. The debris pile is characterized as approximately 80 percent concrete, 13 percent ceramic tile, 4 percent metal, and 3 percent wood. The total estimated volume of this debris pile is 1,080 cubic yards; the total estimated weight is 2,215 tons.

Photos of the three debris piles are included in Appendix 1.

1.3.3 Waste Sampling and Testing Methodology

Based on the estimated volumes for the three debris piles, LACO prepared a workplan for sample collection and testing, based on pre-disposal testing requirements for the Recology Hay Road waste facility in Vacaville, California, which was selected as the proxy facility to establish sampling methodology. The Recology standards require a 4:1 composite sample for each 250 cubic yards of material. The samples must be tested for any constituents that may be present based on prior use of the demolished structure. This waste characterization consisted of collection of 40 samples from the perimeter and vertical axis of the debris piles, in compliance with Recology's pre-disposal testing requirements. The number of samples for each debris pile is summarized in the table below:

Debris Pile	Estimated Volume (cubic yards)	No. of Samples to be Collected	No. of Consolidated Samples to be Tested
AOI 1, Pile 1	1,182	20	5
AOI 1, Pile 2	141	4	1
AOI 2, Pile 1	1,080	16	4
TOTALS	2,403	40	10

The samples were collected and shipped to Kiff Analytical Laboratories in Davis, California and Micro Analytical Laboratories in Emeryville, California (for Asbestos only) under standard chain of custody protocols for testing. The 40 samples were composited by the lab into 10 samples for testing. Based on the prior uses of the demolished structures, and in consultation with Jim Lund, whom is the former operator of the Kraft pulp facility, the samples were analyzed for the following constituents:

- a. Asbestos, tested by Polarized Light Microscopy (PLM) using EPA Method Building Materials
- b. Diesel and Motor Oil with silica gel cleanup, by EPA 8105M
- c. BTEX/MTBE, by EPA 8260 (standard requirement for all pre-disposal testing)
- d. pH by EPA 150.2
- e. LUFT 5 Metals by EPA 6010B
- f. Sulfide by EPA 300.0
- g. Sulfate by SM 4500-S2 D

1.3.4 Preliminary Waste Testing Results

To support evaluation of the cleanup alternatives and to determine the waste category for each of the three debris piles, LACO compared the concentration ranges of the COCs reported by the laboratory (see Appendix 2) with the California Title 22 Hazardous Waste Levels and the San Francisco Bay Regional Water Quality Control Board Screening Levels:

- Direct Exposure Addresses direct exposure and toxicity to humans. Includes incidental ingestion, dermal contact, and inhalation of vapors or dust particles in outdoor air.
- Terrestrial Exposure Addresses potential toxicity to terrestrial flora and fauna. For use in developed urban areas only.
- Ceiling Addresses odor, nuisance, and general ceiling limits.
- Leaching Addresses potential leaching of chemicals from soil and subsequent impact on shallow groundwater. Leaching of inorganic chemicals must be addressed on a site-by-site basis.
- Total Threshold Limit Concentration (TTLC) The total concentrations of a COC which determines if a waste is characterized as hazardous.

• Soluble Threshold Limit Concentration (STLC) - The amount of each analyte that is soluble in the "Waste Extraction Test", (WET) leachate.

A table summarizing results for the laboratory testing is found in Appendix 3.

1.4 Project Goal

HBHRCD is currently working with the County of Humboldt and the US EPA to conduct cleanup efforts across the Subject Property. Mid- and long-term goals for the Subject Property include a public dock facility, aquaponics research facility, mariculture operations, and an energy research facility.

The Subject Property is currently zoned for coastal-dependent industrial uses. While the County of Humboldt, which has land use jurisdiction over the Subject Property, is undergoing a General Plan Update, the Subject Property's proposed General Plan land use and subsequent zoning designation will not change.

2.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS

2.1 Cleanup Oversight Responsibility

The Site cleanup will be overseen by HBHRCD.

2.2 Cleanup Standards for Major Contaminants

Cleanup standards for major contaminants will be based on the concentrations of COCs reported in each debris pile and whether or not they exceed respective environmental standards. Hazardous waste will be transported to a Class I waste facility (see section 3.1 for definitions). Designated waste will be transported to a Class II facility. Non-hazardous and inert waste will be either transported to a Class II or III waste facility or retained on-site for use as industrial fill.

2.3 Laws and Regulations Applicable to the Cleanup

Laws and regulations that are applicable to this cleanup include the Federal Small Business Liability Relief and Brownfields Revitalization Act, the Federal Davis-Bacon Act, the Federal Resource Conservation and Recovery Act, California Code of Regulations Title 22, California Regional Water Quality Control Board regulations, and County of Humboldt regulations. Federal, state, and local laws regarding procurement of contractors to conduct the cleanup and transport debris will be followed. In addition, all appropriate permits (e.g., waste transport/disposal manifests) will be obtained prior to the work commencing.

3.0 EVALUATION OF CLEANUP ALTERNATIVES

3.1 Cleanup Alternatives Considered

To address different waste classifications present at the Site, three different alternatives were considered, limited to: Alternative #1 - Cover and Prevent Access; Alternative #2 - Full Removal and Disposal; and Alternative #3 - Partial Removal and Disposal, On-site Reuse of Non-hazardous Waste. A No Action alternative was not considered due to the risk of exposure to COCs resulting from leaving the debris piles uncovered and accessible.

For the purposes of this analysis, the following definitions for waste classes and waste facilities will be applied:

(based on Article 2, Title 27, California Code of Regulations [CCR])

- Hazardous waste: Means any waste which, under Article 1, Chapter 11, Division 4.5 (§66261.3 et seq.) of Title 22 of the CCR, is required to be managed according to Division 4.5 of Title 22 of the CCR.
- Designated waste: either

(a) Hazardous waste that has been granted a variance from hazardous waste management requirements pursuant to Section 25143 of the Health and Safety Code.

(b) Nonhazardous waste that consists of, or contains, pollutants that, under ambient environmental conditions at a waste management unit, could be released in concentrations exceeding applicable water quality objectives or that could reasonably be expected to affect beneficial uses of the waters of the state as contained in the appropriate state water quality control plan.

- Non-hazardous solid waste: All putrescible and non-putrescible solid, semi-solid, and liquid wastes, including garbage, trash, refuse, paper, rubbish, ashes, industrial wastes, demolition and construction wastes, abandoned vehicles and parts thereof, discarded home and industrial appliances, manure, vegetable or animal solid and semi-solid wastes and other discarded waste (whether of solid or semi-solid consistency); provided that such wastes do not contain wastes which must be managed as hazardous wastes, or wastes which contain soluble pollutants in concentrations which exceed applicable water quality objectives, or could cause degradation of waters of the state (i.e., designated waste).
- Inert waste: That subset of solid waste that does not contain hazardous waste or soluble pollutants at concentrations in excess of applicable water quality objectives, and does not contain significant quantities of decomposable waste.

(per California State Water Resources Control Board)

- Class I waste facility: May accept hazardous and nonhazardous wastes.
- Class II waste facility: May accept "designated" and nonhazardous wastes.
- Class III waste facility: May accept nonhazardous wastes.
- Unclassified site: May accept inert wastes only.

3.1.1 Alternative #1: Cover and Prevent Access

This alternative involves covering the piles with a durable sheeting, installing stormwater BMPs, and fencing off access.

3.1.2 Alternative #2: Full Removal and Disposal

This alternative involves the removal of the three debris piles within the boundaries of the Site. All hazardous waste would be removed by a qualified contractor and transported and disposed of at a permitted Class I waste facility. All designated waste would be removed by a qualified contractor and transported and disposed of at a permitted Class I, II, or III waste facility, depending on waste characterization results. All non-hazardous waste would be removed by a qualified contractor and transported and disposed of at a permitted Class I, II, or III waste facility, depending on waste characterization results. All non-hazardous waste would be removed by a qualified contractor and transported and disposed of at a permitted Class III waste facility. All inert waste would be removed by a qualified contractor and transported and transported and disposed of at a permitted Class III or Unclassified waste facility.

3.1.3 Alternative #3: Partial Removal and Disposal, On-site Reuse of Nonhazardous Waste

This alternative involves the removal of hazardous waste from the three debris piles within the boundaries of the Site, and retention of non-hazardous waste on-site for future industrial fill uses. All hazardous waste would be removed by a qualified contractor and transported and disposed of at a permitted Class I waste facility. All non-hazardous solid waste would undergo additional testing with an XRF at the cubic yard level of discretion to support an evaluation of its reuse on the Subject Property for industrial fill material, following site analysis and development of industrial controls and under a Waste Discharge Permit from the North Coast Regional Water Quality Control Board. Prior to the use of the retained non-hazardous material for industrial fill, the material would be covered with durable sheeting and fenced off to prevent access.

3.2 Cost Estimate of Cleanup Alternatives

To satisfy EPA requirement, the effectiveness, implementability, and cost of each alternative must be considered prior to selecting a recommended cleanup alternative.

3.2.1 Effectiveness

- Alternative #1: Cover and Prevent Access has limited effectiveness in controlling or preventing the exposure of receptors to COCs at the Site. This alternative also increases the potential for leaching and runoff of COCs into the soil or surface waters over time. In addition, the presence of the debris on the Site would limit the ability of the Subject Property owner to accomplish the Project Goal and proposed site reuse.
- Alternative #2: Full Removal and Disposal is effective in removing the debris from the Site and properly disposing of the material at appropriate facilities. This would eliminate site specific exposure pathways.
- Alternative #3: Partial Removal and Disposal, On-site Reuse of Non-hazardous Waste is effective in removing the debris from the Site and properly disposing of the material at appropriate waste facilities, while reusing non-hazardous materials on-site for proper uses under industrial controls.

3.2.2 Implementability

- Alternative #1: Cover and Prevent Access is simple to implement since this alternative is limited to covering and presenting access to the debris piles.
- Alternative #2: Full Removal and Disposal is relatively simple to implement. Following characterization of the waste material, the waste material would need to be separated by waste classification and transported and disposed of at appropriately-classified waste facilities.
- Alternative #3: Partial Removal and Disposal, On-site Reuse of Non-hazardous Waste is relatively
 simple to implement. Following characterization of the waste material, the waste material would
 need to be separated by waste classification and transported and disposed of at appropriatelyclassified waste facilities. Non-hazardous waste deemed appropriate for on-site reuse would be
 kept on the Subject Property for use as industrial fill. The non-hazardous waste would need to be
 stored properly on the Site, which may entail the application of Best Management Practices to
 prevent release of pollutants into stormwater runoff and associated water quality impacts.

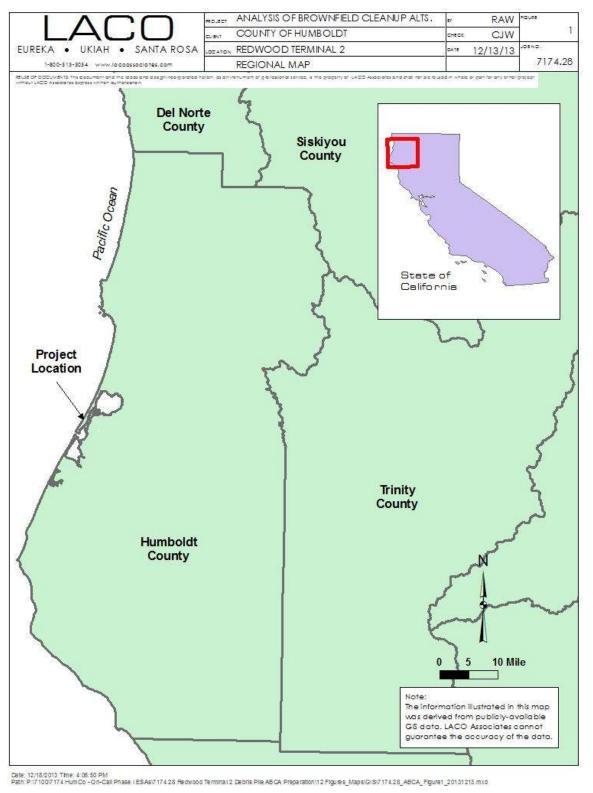
3.2.3 Cost

A preliminary cost comparison is provided below. A table with cost scenario comparisons is found in Appendix 4:

- Alternative #1: Cover and Prevent Access is the low cost alternative; costs would be limited to the purchase, installation, and maintenance of durable sheet plastic, stormwater BMPs, and fencing. Preliminary cost estimate is \$5,000; this includes one year of implementation and maintenance of this alternative. Ongoing maintenance of this alternative would involve recurring costs.
- Alternative #2: Full Removal and Disposal is the highest-cost alternative, as it assumes removal and shipping of all debris from AOI 1 to a Class II waste facility, and removal and shipping of all debris from AOI 2 to a Class I waste facility. The preliminary cost estimate of this alternative is approximately \$668,000. Should subsequent testing result in the need to ship all debris from all three debris piles to a Class I waste facility, the preliminary cost estimate is approximately \$837,000. Subsequent testing results allowing for the disposal of more debris to Class II and Class III waste facilities will reduce the estimated cost of this alternative. The final cost estimate of this alternative will require further waste characterization testing to determine the level of contamination for particular constituents.
- Alternative #3: Partial Removal and Disposal, On-site Reuse of Non-hazardous Waste includes the cost of a Waste Discharge Permit from the North Coast Regional Water Quality Control Board (NCRWQCB) and a site analysis for on-site disposal of non-hazardous materials. The preliminary cost estimate for this alternative assumes: removal and shipping of 25 percent of debris from AOI 1 (Piles 1 and 2) to a Class II waste facility; removal and shipping of 25 percent of the debris from AOI 2 to a Class I waste facility; site analysis for materials disposal; NCRWQCB Waste Discharge Permit; County of Humboldt grading permit; and costs for on-site disposal of non-hazardous materials. The preliminary cost estimate for this alternative is approximately \$220,000. Should subsequent XRF testing result in a higher volume of debris needing to be shipped and disposed of off-site at a Class I or II waste facility, the cost estimate will be higher; lower volumes required to be shipped off-site will reduce the cost estimate. The final cost estimate of this alternative will require further waste characterization testing with an XRF at the cubic yard level of discretization to determine the level of contamination for particular constituents. This cost estimate also assumes that a suitable location will be found on the Site for disposal of the non-hazardous materials, and that the NCRWQCB will issue a Waste Discharge Permit. This alternative may reduce future Site development costs by providing industrial fill for future Site grading or construction activities.

3.3 Recommended Cleanup Alternative

The recommended cleanup alternative is Alternative #3: Partial Removal and Disposal, On-site Reuse of Non-hazardous Waste. Alternative #1: Cover and Prevent Access cannot be recommended because it does not address exposure of receptors to COCs; temporary covering and fencing does not remedy the problem. The presence of the debris piles also limits the ability of the Subject Property owner to meet the project goals. Alternative #2, while addressing the potential presence of COCs and the potential exposure to receptors, is a higher-cost alternative than Alternative #3. In addition, because the Subject Property is expected to undergo significant development in the mid-term, the availability of quality industrial fills will reduce the costs of future construction. Implementation of Alternative #3 will retain the utility of the non-hazardous material from the Site.



FIGURES

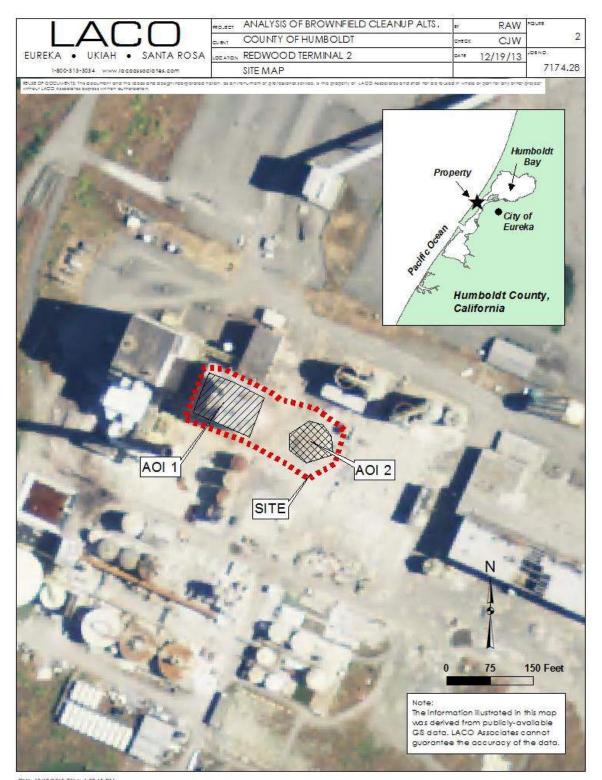

Figure 1 Regional Map

Figure 2 Site Map

Date: 12/18/2013 Time: 4:07:19 PM. Path: P:/7100/7174 HumCo - On-Call Phase I ESAsi7174.26 Redwood Terminal 2 Debris Pile ABCA Preparation/12 Figures_MapsiGI Si7174.28_ABCA_Figure2_20131218 mtd

APPENDIX 1

Site Photos

APPENDIX 2

Laboratory Testing Results

Laboratory Results

Chris Watt LACO Associates, Inc. 311 S. Main Street Ukiah, CA 95482

Subject : 10 Soil Samples Project Name : Pulp Mill Debris Pile Sampling Project Number : 7591.09

Dear Mr. Watt,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy D. Jurpen

Troy Turpen

Subject :10 Soil SamplesProject Name :Pulp Mill Debris Pile SamplingProject Number :7591.09

Case Narrative

All soil samples were reported on a total weight (wet weight) basis.

Recoveries for some Matrix Spike/Matrix Spike Duplicate analytes were outside of control limits. This may indicate a bias for the samples that were spiked. Since the LCS recoveries were within control limits, no data are flagged.

KIFF S Analytical LC

Analysis Summary

Report Number: 87006 Date: 01/02/14

Attention: Chris Watt LACO Associates, Inc. 311 S. Main Street Ukiah, CA 95482

Project Name :Pulp Mill Debris Pile Sampling Project Number : 7591.09

	Sa	Sample Name		7174-A0I1-A	7174-/	7174-AOI1-B	7174-4	7174-A0I1-C	7174-AOI1-D	011-D	7174-4	7174-AOI1-E	7174-,	7174-AOI2-A	7174-/	7174-AOI2-B	7174-/	7174-A0I2-C
	õ	Sample Date	12/2	12/23/13	12/2	/23/13	12/2	12/23/13	12/2:	12/23/13	12/2	12/23/13	12/2	12/23/13	12/2	12/23/13	12/2	12/23/13
Analyte	Method	Units	MRL	Results	MRL	Results	MRL	Results	MRL	Results	MRL	Results	MRL	Results	MRL	Results	MRL	Results
Hd	EPA 9045C	pH Units		10.01		10.09		66.6	<u> </u>	9.98		10.01		8.75		8.51		8.53
Cadmium	EPA 6010B	mg/Kg	0.50	6.9	0.50	4.8	2.5	4.5	0.50	3.8	0.50	4.4	0.50	1.0	0.50	2.0	0.50	2.3
Chromium	EPA 6010B	mg/Kg	0.25	180	0.25	210	0.25	310	0.25	740	0.25	220	0.25	110	0.25	100	0.25	61
Lead	EPA 6010B	mg/Kg	0.50	44	0.50	84	2.5	06	0.50	49	0.50	53	0.50	2300	0.50	2300	0.50	2100
Nickel	EPA 6010B	mg/Kg	0.25	190	0.25	330	1.2	340	0.25	490	0.25	200	0.25	85	0.25	72	0.25	50
Zinc	EPA 6010B	mg/Kg	2.4	650	2.5	860	2.5	1000	2.4	710	2.4	730	1.0	510	2.4	620	2.4	680
Benzene	EPA 8260B	mg/Kg	0.0050	Q	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN
Ethylbenzene	EPA 8260B	mg/Kg	0.0050	Q	0.0050	QN	0.0050	gN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN
Toluene	EPA 8260B	mg/Kg	0.0050	Q	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN
Total Xylenes	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN
Methyl-t-butyl ether (MTBE)	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0.0050	QN	0:0050	QN	0.0050	DN	0.0050	DN
1,2-Dichloroethane-d4 (Surr)	EPA 8260B	%		102		103		99.2	<u> </u>	95.3		98.9		105		101		103
Toluene - d8 (Surr)	EPA 8260B	%		9.66		99.8		0.66	<u> </u>	0.66		98.9		99.4		99.8		101
TPH as Diesel (Silica Gel)	M EPA 8015	mg/Kg	100	270	100	480	100	370	100	390	100	440	20	110	20	100	10	57
TPH as Motor Oil (Silica Gel)	M EPA 8015	mg/Kg	800	1200	800	2200	800	1600	800	1900	800	2000	200	370	200	380	80	210
Octacosane (Silica Gel Surr)	M EPA 8015	%		Diluted		Diluted		Diluted		Diluted		Diluted		Diluted		Diluted		127

Analysis Summary

Report Number: 87006 Date: 01/02/14

Attention : Chris Watt LACO Associates, Inc. 311 S. Main Street Ukiah, CA 95482

	Sa	Sample Name		7174-A0I2-D	7174-/	7174-AOI1-SP
	ÿ	Sample Date	12/2	12/23/13	12/2	12/23/13
Analyte	Method	Units	MRL	Results	MRL	Results
Н	EPA 9045C	pH Units		8.79		69.6
Cadmium	EPA 6010B	mg/Kg	2.4	2.7	0.50	0.75
Chromium	EPA 6010B	mg/Kg	1.2	110	0.25	100
Lead	EPA 6010B	mg/Kg	2.4	33000	0.50	29
Nickel	EPA 6010B	mg/Kg	1.2	83	0.25	72
Zinc	EPA 6010B	mg/Kg	2.4	840	2.4	2100
Benzene	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN
Ethylbenzene	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN
Toluene	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN
Total Xylenes	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN
Methyl-t-butyl ether (MTBE)	EPA 8260B	mg/Kg	0.0050	QN	0.0050	QN
1,2-Dichloroethane-d4 (Surr)	EPA 8260B	%		103		100
Toluene - d8 (Surr)	EPA 8260B	%		6.96		100
TPH as Diesel (Silica Gel)	M EPA 8015	mg/Kg	10	130	20	72
TPH as Motor Oil (Silica Gel)	M EPA 8015	mg/Kg	80	550	200	300
Octacosane (Silica Gel Surr)	M EPA 8015	%		123		Diluted

Report Number: 87006 Date : 01/02/14

Sample : 7174-AOI1-A		Matrix : S	Soil	Lab Number : 87	006-01
Sample Date :12/23/13 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	10.01		pH Units	EPA 9045C	12/27/13 10:25
Cadmium Chromium Lead Nickel Zinc	6.9 180 44 190 650	0.50 0.25 0.50 0.25 2.4	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	12/31/13 10:28 12/31/13 10:28 12/31/13 10:28 12/31/13 10:28 01/02/14 10:55
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 13:46 12/27/13 13:46 12/27/13 13:46 12/27/13 13:46
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 13:46
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	102 99.6		% Recovery % Recovery	EPA 8260B EPA 8260B	12/27/13 13:46 12/27/13 13:46
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th TPH as Motor Oil (Silica Gel)	270 nan typical Diese 1200	100 el Fuel.) 800	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	12/31/13 12:07 12/31/13 12:07
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/31/13 12:07

Sample : 7174-AOI1-B		Matrix : S	Soil	Lab Number : 87	006-02
Sample Date :12/23/13					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	10.09		pH Units	EPA 9045C	12/27/13 10:25
Cadmium Chromium	4.8 210	0.50 0.25	mg/Kg mg/Kg	EPA 6010B EPA 6010B	12/31/13 10:33 12/31/13 10:33
Lead	84	0.50	mg/Kg	EPA 6010B	12/31/13 10:33
Nickel	330	0.25	mg/Kg	EPA 6010B	12/31/13 10:33
Zinc	860	2.5	mg/Kg	EPA 6010B	01/02/14 11:00
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 14:25 12/27/13 14:25 12/27/13 14:25 12/27/13 14:25 12/27/13 14:25
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 14:25
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	103 99.8		% Recovery % Recovery	EPA 8260B EPA 8260B	12/27/13 14:25 12/27/13 14:25
TPH as Diesel (Silica Gel)	480	100	mg/Kg	M EPA 8015	12/31/13 11:31
(Note: Hydrocarbons are higher-boiling th TPH as Motor Oil (Silica Gel)	an typical Diese 2200	800 800	mg/Kg	M EPA 8015	12/31/13 11:31
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/31/13 11:31

Lab Number : 87006-03

Project Name : Pulp Mill Debris Pile Sampling
Project Number : 7591.09

Sample :	7174-AOI1-C
----------	-------------

Sample Date :12/23/13

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	9.99		pH Units	EPA 9045C	12/27/13 10:25
Cadmium	4.5	2.5	mg/Kg	EPA 6010B	01/02/14 11:06
Chromium	310	0.25	mg/Kg	EPA 6010B	12/31/13 10:38
Lead	90	2.5	mg/Kg	EPA 6010B	01/02/14 11:06
Nickel	340	1.2	mg/Kg	EPA 6010B	01/02/14 11:06
Zinc	1000	2.5	mg/Kg	EPA 6010B	01/02/14 11:06
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:01
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:01
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:01
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:01
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:01
1,2-Dichloroethane-d4 (Surr)	99.2		% Recovery	EPA 8260B	12/27/13 15:01
Toluene - d8 (Surr)	99.0		% Recovery	EPA 8260B	12/27/13 15:01
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling t	370 han typical Diese	100 el Fuel.)	mg/Kg	M EPA 8015	12/30/13 23:24
TPH as Motor Oil (Silica Gel)	1600	800	mg/Kg	M EPA 8015	12/30/13 23:24
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/30/13 23:24

Matrix : Soil

Sample : 7174-AOI1-D		Matrix : S	Soil	Lab Number	87006-04
Sample Date :12/23/13 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	9.98		pH Units	EPA 9045C	12/27/13 10:26
Cadmium Chromium Lead	3.8 740 49	0.50 0.25 0.50	mg/Kg mg/Kg mg/Kg	EPA 6010B EPA 6010B EPA 6010B	12/31/13 10:43 12/31/13 10:43 12/31/13 10:43
Nickel Zinc	490 710	0.25 2.4	mg/Kg mg/Kg	EPA 6010B EPA 6010B	12/31/13 10:43 01/02/14 11:11
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 15:35 12/27/13 15:35 12/27/13 15:35 12/27/13 15:35
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 15:35
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	95.3 99.0		% Recovery % Recovery	EPA 8260B EPA 8260B	12/27/13 15:35 12/27/13 15:35
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling	390 than typical Dies	100 el Fuel.)	mg/Kg	M EPA 8015	12/31/13 10:21
TPH as Motor Oil (Silica Gel)	1900	800	mg/Kg	M EPA 8015	12/31/13 10:21
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/31/13 10:21

Sample : 7174-AOI1-E		Matrix : S	Soil	Lab Number : 87	006-05
Sample Date :12/23/13					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	10.01		pH Units	EPA 9045C	12/27/13 10:26
Cadmium Chromium Lead	4.4 220 53	0.50 0.25 0.50	mg/Kg mg/Kg mg/Kg	EPA 6010B EPA 6010B EPA 6010B	12/31/13 10:48 12/31/13 10:48 12/31/13 10:48
Nickel	200	0.25	mg/Kg	EPA 6010B	12/31/13 10:48
Zinc	730	2.4	mg/Kg	EPA 6010B	01/02/14 11:16
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 16:09 12/27/13 16:09 12/27/13 16:09 12/27/13 16:09
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 16:09
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	98.9 98.9	100	% Recovery % Recovery	EPA 8260B EPA 8260B M EPA 8015	12/27/13 16:09 12/27/13 16:09 01/02/14 11:33
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	440 an typical Diese		mg/Kg	WIEPA OUTS	01/02/14 11.33
TPH as Motor Oil (Silica Gel)	2000	800	mg/Kg	M EPA 8015	01/02/14 11:33
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	01/02/14 11:33

Sample : 7174-AOI2-A		Matrix : S	Soil	Lab Number : 87	7006-06
Sample Date :12/23/13		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	8.75		pH Units	EPA 9045C	12/27/13 10:26
Cadmium	1.0	0.50	mg/Kg	EPA 6010B	12/31/13 10:12
Chromium	110	0.25	mg/Kg	EPA 6010B	12/31/13 10:12
Lead	2300	0.50	mg/Kg	EPA 6010B	12/31/13 10:12
Nickel	85	0.25	mg/Kg	EPA 6010B	12/31/13 10:12
Zinc	510	1.0	mg/Kg	EPA 6010B	12/31/13 10:12
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 23:08 12/27/13 23:08 12/27/13 23:08 12/27/13 23:08
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 23:08
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	105 99.4		% Recovery % Recovery	EPA 8260B EPA 8260B	12/27/13 23:08 12/27/13 23:08
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	110 nan typical Diese	20 el Fuel.)	mg/Kg	M EPA 8015	12/30/13 21:03
TPH as Motor Oil (Silica Gel)	370	200	mg/Kg	M EPA 8015	12/30/13 21:03
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/30/13 21:03

Sample : 7174-AOI2-B		Matrix : S	Soil	Lab Number : 8	37006-07
Sample Date :12/23/13					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	8.51		pH Units	EPA 9045C	12/27/13 10:26
Cadmium	2.0	0.50	mg/Kg	EPA 6010B	12/31/13 11:00
Chromium	100	0.25	mg/Kg	EPA 6010B	12/31/13 11:00
Lead	2300	0.50	mg/Kg	EPA 6010B	12/31/13 11:00
Nickel	72	0.25	mg/Kg	EPA 6010B	12/31/13 11:00
Zinc	620	2.4	mg/Kg	EPA 6010B	01/02/14 11:21
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 22:29
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 22:29
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 22:29
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 22:29
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 22:29
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	12/27/13 22:29
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	12/27/13 22:29
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling t	100 han typical Diese	20 el Fuel.)	mg/Kg	M EPA 8015	12/30/13 21:39
TPH as Motor Oil (Silica Gel)	380	200	mg/Kg	M EPA 8015	12/30/13 21:39
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/30/13 21:39

Sample : 7174-AOI2-C		Matrix : S	Soil	Lab Number : 87	006-08
Sample Date :12/23/13	Measured	Method Reporting	Linita	Analysis Method	Date/Time
Parameter pH	Value 8.53	Limit	Units pH Units	EPA 9045C	Analyzed 12/27/13 10:26
P.1	0.00		prionito		
Cadmium	2.3	0.50	mg/Kg	EPA 6010B	12/31/13 11:05
Chromium	61	0.25	mg/Kg	EPA 6010B	12/31/13 11:05
Lead	2100	0.50	mg/Kg	EPA 6010B	12/31/13 11:05
Nickel	50	0.25	mg/Kg	EPA 6010B	12/31/13 11:05
Zinc	680	2.4	mg/Kg	EPA 6010B	01/02/14 11:25
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 21:53 12/27/13 21:53 12/27/13 21:53 12/27/13 21:53
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 21:53
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	EPA 8260B	12/27/13 21:53
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	12/27/13 21:53
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	57 an typical Diese	10 el Fuel.)	mg/Kg	M EPA 8015	12/31/13 09:45
TPH as Motor Oil (Silica Gel)	210	80	mg/Kg	M EPA 8015	12/31/13 09:45
Octacosane (Silica Gel Surr)	127		% Recovery	M EPA 8015	12/31/13 09:45

Sample : 7174-AOI2-D		Matrix : S	Soil	Lab Number : 87	7006-09
Sample Date :12/23/13 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	8.79		pH Units	EPA 9045C	12/27/13 10:26
Cadmium Chromium Lead Nickel Zinc	2.7 110 33000 83 840	2.4 1.2 2.4 1.2 2.4	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	01/02/14 11:30 01/02/14 11:30 01/02/14 11:30 01/02/14 11:30 01/02/14 11:30
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	12/27/13 21:16 12/27/13 21:16 12/27/13 21:16 12/27/13 21:16
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 21:16
1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr)	103 99.9		% Recovery % Recovery	EPA 8260B EPA 8260B	12/27/13 21:16 12/27/13 21:16
TPH as Diesel (Silica Gel)	130	10	mg/Kg	M EPA 8015	12/31/13 09:10
(Note: Hydrocarbons are higher-boiling the TPH as Motor Oil (Silica Gel)	550	80	mg/Kg	M EPA 8015	12/31/13 09:10
Octacosane (Silica Gel Surr)	123		% Recovery	M EPA 8015	12/31/13 09:10

Lab Number : 87006-10

Project Name : Pulp Mill Debris Pile Sampling
Project Number : 7591.09

Sample: 7174-AOI1-SP	
Sample Date :12/23/13	

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
рН	9.69		pH Units	EPA 9045C	12/27/13 10:27
Cadmium	0.75	0.50	mg/Kg	EPA 6010B	12/31/13 11:16
Chromium	100	0.25	mg/Kg	EPA 6010B	12/31/13 11:16
Lead	29	0.50	mg/Kg	EPA 6010B	12/31/13 11:16
Nickel	72	0.25	mg/Kg	EPA 6010B	12/31/13 11:16
Zinc	2100	2.4	mg/Kg	EPA 6010B	01/02/14 11:35
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 20:42
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 20:42
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 20:42
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 20:42
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13 20:42
1,2-Dichloroethane-d4 (Surr)	100		% Recovery	EPA 8260B	12/27/13 20:42
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	12/27/13 20:42
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling t	72	20 el Fuel)	mg/Kg	M EPA 8015	12/30/13 20:28
TPH as Motor Oil (Silica Gel)	300	200	mg/Kg	M EPA 8015	12/30/13 20:28
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	12/30/13 20:28

Matrix : Soil

g
ata
Δ
¥
a
m
8
Ę
Ð
Σ
••
Ľ
2
ē
R
C
ð

Project Name : Pulp Mill Debris Pile Sampling

Project Number : 7591.09

		Method			
Parameter	Measured	Reporting Limit	g LInits	Analysis Method	Date Analvzed
Cadmium	< 0.50	0.50	mg/Kg	EPA 6010B	12/31/13
Chromium	< 0.25	0.25	mg/Kg	EPA 6010B	12/31/13
Lead	< 0.50	0.50	mg/Kg	EPA 6010B	12/31/13
Nickel	< 0.25	0.25	mg/Kg	EPA 6010B	12/31/13
Zinc	< 1.0	1.0	mg/Kg	EPA 6010B	12/31/13
TPH as Diesel (Silica Gel)	< 1.0	1.0	ma/Ka	M EPA 8015	12/31/13
	2	2	B		
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	12/31/13
Octacosane (Silica Gel Surr)	94.8		%	M EPA 8015	12/31/13
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	12/27/13
1,2-Dichloroethane-d4 (Surr)	98.9		%	EPA 8260B	12/27/13
Toluene - d8 (Surr)	100		%	EPA 8260B	12/27/13

Report Number : 87006 Date : 01/02/14

Date Analyzed

Analysis Method

Method Reporting Limit Units

Measured Value

Parameter

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : Pulp Mill Debris Pile Sampling

Project Number: 7591.09

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value L	e id Analysis Units Method	Spiked Sample Date Percent Analyzed Recov.	Duplicati Spiked Sample Percent Recov.	Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Cadmium												
	87006-06	1.0	49.0	49.0	52.6	50.8	mg/Kg EPA 6010B	12/31/13 105	102	3.56	75-125	20
Chromium												
	87006-06	110	49.0	49.0	113	132	mg/Kg EPA 6010B	12/31/13 0.00	36.7	15.5	75-125	20
Lead												
	87006-06	2300	49.0	49.0	1400	2320	mg/Kg EPA 6010B	12/31/13 0.00	92.2	49.2	75-125	20
Nickel												
	87006-06	85	49.0	49.0	116	108	mg/Kg EPA 6010B	12/31/13 63.6	48.5	6.59	75-125	20
Zinc												
	87006-06	510	49.0	49.0	317	750	mg/Kg EPA 6010B	12/31/13 0.00	495	81.3	75-125	20
TPH-D (Si Gel)												
•	86994-03	1	20.0	19.9	54.9	45.7	mg/Kg M EPA 8015	12/31/13 220	175	22.9	60-140	25
Benzene												
	86948-01	<0.0050	0.0366	0.0351	0.0319	0.0280	mg/Kg EPA 8260B	12/27/13 87.2	79.8	8.87	70.0-130	25
Ethylbenzene												
	86948-01	<0.0050	0.0366	0.0351	0.0322	0.0275	mg/Kg EPA 8260B	12/27/13 88.0	78.2	11.8	70.0-130	25
Methyl-t-butyl ether	sther											
	86948-01	<0.0050	0.0365	0.0350	0.0390	0.0329	mg/Kg EPA 8260B	12/27/13 107	93.9	12.8	60.0-130	25
Pa												

QC Report : Matrix Spike/ Matrix Spike Duplicate

Report Number: 87006 Date: 01/02/2014

Project Name : Pulp Mill Debris Pile Sampling

Project Number: 7591.09

Relative Percent Diff. Limit		រូ	2	
		0 25	0 25	
Spiked Sample Percent Recov. Limit		70.0-130	70.0-130	
e Relative F Percent F Diff.		10.9	10.1	
Duplicate Spiked Sample Percent Recov.		76.8	79.6	
Spiked Sample Percent Recov.		85.7	88.1	
Date Analyzed I		12/27/13 85.7	12/27/13 88.1	
		Ш	В	
Analysis Method		EPA 8260	EPA 8260B	
Jnits 1		mg/Kg E	mg/Kg El	
Duplicate Spiked Sample Value L		0.0270 mg/Kg EPA 8260B	0.0280	
Spiked Sample Value		0.0314	0.0323	
Spike Dup. Level		0.0351	0.0351 0.0323	
Spike Level		0.0366		
Sample Spike Value Level		<0.0050	<0.0050	
Spiked Sample		86948-01 <0.0050 0.0366 0.0351 0.0314	86948-01 <0.0050 0.0366	
Parameter	P + M Xylene	Toluene	-	

QC Report : Laboratory Control Sample (LCS)

Project Name : Pulp Mill Debris Pile Sampling

Project Number: 7591.09

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Cadmium	50.0	mg/Kg	EPA 6010B	12/31/13	98.5	85-115
Chromium	50.0	mg/Kg	EPA 6010B	12/31/13	98.9	85-115
Lead	50.0	mg/Kg	EPA 6010B	12/31/13	97.4	85-115
Nickel	50.0	mg/Kg	EPA 6010B	12/31/13	97.8	85-115
Zinc	50.0	mg/Kg	EPA 6010B	12/31/13	99.8	85-115
TPH-D (Si Gel)	20.0	mg/Kg	M EPA 8015	12/31/13	93.7	70-130
Benzene	0.0400	mg/Kg	EPA 8260B	12/27/13	97.1	70.0-130
Ethylbenzene	0.0400	mg/Kg	EPA 8260B	12/27/13	94.8	70.0-130
Methyl-t-butyl ether	0.0399	mg/Kg	EPA 8260B	12/27/13	114	60.0-130
P + M Xylene	0.0400	mg/Kg	EPA 8260B	12/27/13	93.0	70.0-130
Toluene	0.0400	mg/Kg	EPA 8260B	12/27/13	97.5	70.0-130

QC Report : Sample Duplicate

Report Number: 87006 Date: 01/02/2014

Project Name : Pulp Mill Debris Pile Sampling

Project Number : 7591.09

Parameter	Sample ID	Units	Analysis Method	Date Analyzed	Sample Value	Duplicate Value	RPD	RPD Limit
Hd	87006-01	Hd	EPA 9045C	12/27/13	10.01	9.97	0.4	25

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800 KIFF ANALYTICAL, LLC

KIFF ()	2795 2nd Street, Suite 300 Davis, CA 95618	Suite 300												\sim	\sum	\lesssim	Ň	-										
	Lab: 530.297.4800 Fax: 530.297.4802	802 802							S	SRG # / Lab No.	Lab	Ň	1	ာ		5	2		Т					Page			oť	
Project Contact (Hardcopy or PDF 1 Chris Matt - LACO	То):	California EDF Report?	nia El	JF Re	:port;			¥es	\Box	£				^o	hain	Chain-of-Custody	Cust	od V	Rec	p.o.	and	Record and Analysis	lysi		Request	ы.		
Company / Address:		Sampling Company Log	ing C	ompa	Jy Log	Cod			ŀ	-								Analysis Request	sis F	Gequ	est						TAT	Γ
21 W 4th Street, Eureka, CA											[C	E,	PLEASE CIRCLE	acre						
Phone Number: 707-443-5054		Giobal ID	ë							-								an				╻┝					12 hr	
Fax Number:		EDF Deliverable To (Email Address)	eliver Blood	able	To (En	nail Ac	dress	;;;													(0109							
		Wallow Jacobssociales.col	<u>Wiac</u>	1455	DCIAIC						Т										12						74 Pr	λju
7591.09		LACO Associates) Ass(ociate	S												(8)				.002 A					-	-	O 98
Project Name: Duito Mitt Debris Pile Sampling		Sampler Print Name	er Pri Vellik	nt Nai	ne:						1						0928 \			(010								U de.
		Sampter Signature.	6	Tate (Anaca						493) I			9/2.0							48nr	Forl
		Ĺ	4	4	Y			ſ			1		(_			leiJ			500			_				[
Project Address:	Sampling		20 0 airier	ner		E B B B B B B B B B B B B B B B B B B B	servative	ve Ve	2	Matrix							jjn			٧d			()					
		<u>∀0</u> ,) dqq 2.0 🧕	80928 A93	928 A93) a	38TM) zetsi 	o č) seten 20 C, l , 2 D(Halocarbor	A soinsgiO	Diesel (EF	Motor Oil	IE) sisieM)) alsrem IiQ arc Adal	ad (EPA 245	JTC) bee.	A93 Y8 3	re by SM 150. 150.		72hr	
Sample Designation	Date Time	S ί 66Λ6 40 ΨΙ Λ	Роју	Glass Tedlar		HNO ³ HCI	anoM		Water Soil	'nð	A HATM	· · ·					-eliteloV			71 MAD			1.T.B.W				זַבֿ	
7174-AOI1-A	12/23/2013			×			×		^	×	$\hat{}$	× ×						×	<u>×</u>		×			×	× ×			5
7174-AOI1-B	12/23/2013			×			×				×	×			_			-	××		×			×	× ×			B
7174-A011-C	12/23/2013			×			×				$\hat{}$	××						<u> </u>	×		×	-		×	××		-	Ĉ
7174-AOI1-D	12/23/2013			×			×			×	<u>^</u>	××						$\hat{}$	× ×		×			×	×			3
7174-AOI1-E	12/23/2013			×			×			×	_	×						_	× ×		×	_		×	 			R
7174-AOI2-A	12/23/2013			×			×			×	$\hat{-}$	×							××		×			×	××			3
7174-A012-B	12/23/2013			×		_	×			- ×	$\hat{}$	××							× ×		×			×	××			2
7174-A012-C	12/23/2013			×		-	×		_	×		× ×							× ×		×			×	××			8
7174-A012-D	12/23/2013			×		-	×			×	Ĥ	××						$\hat{}$	× ×		×			×	××		_	\mathcal{S}
7174-AOI1-SP	12/23/2013			×	_		×			×		××							××		×			×	×××			õ
Relinquished by: John Weltik	Date 12/23	Date 12/23/2013	Time 1530		Received by FED EX	by.							Ren com COL	Remarks: composite samples with identical sample id's (i.e. composited into one sample for analysi	samp ited i	les wit nto o	h ider Ne Si	tical s ampli	ample e for	id's (i analy	e.4 je /SiS V	vith a	n iD	174-A of 71	4 jars lableled 7174-AOI1-A to be is with an ID of 7174-AOI1-	Remarks: composite samples with identical sample id's (i.e. 4 jars lableled 7174-AOI1-A to be composited into one sample for analysis with an ID of 7174-AOI1-A);	Ä	
Henriquished by	Date		ц Т		Received by:	;yd							8	do the same for each sample ID	amê	for e	ach∶	samp	0 D									
20																												
Reinquished by:	Date	Ċ	Time	<u>a.</u>	Received by La	ية م م	boratory	ž					}		ŀ	,		For Lab Use Only:	≣	ē		Sample Receipt	e Re	l gi				
21	<u>[2]</u>	(12413	42	5	2	P	13	н¥	TAN	7.7	L	\mathcal{P}	<u>*</u>	Temp °C		Initials	<u>~</u>		Date	-		-	lime	-	Them. ID #	*	Coolant Present Yes / No	No No
Distribution White Lab, Pink - Originator				-			ś			#	·	\$	4		-		1									1		

Distribution - White - Lab; Pink - Originator Rev: 052011

KIFF Sample Receipt Initials/Date: Sample Receipt Initials/Date: TAT: Standard Rush Temp °C S.2 N/A Innoof-Custody: Cooler Receil Is COC signed by relinquisher? Is COC signed by relinquisher? Is COC signed by relinquisher? Is the sampler's name on the COC? Are there analyses or hold for all sander Are sample container's name on the COC? Are sample container's name on the COC? Are sample container's name on the COC? Are sample container's name on the COC? Are sample container's name on the COC? Are sample container's name on the COC? Are sample container's name on the COC? Are samples within holding time?<	ittials/Date: Rush Rush N/A Therm ID / Therm ID / Cooler Receipt Initi rouisher?	SAMPLE REC Sample Rec Split Done Mi Split None Mi Split No	EIPT CHE 1321 Sa 1321 Sa 1321 Sa 1321 Sa Project ID Project	Labels Labels Initi		RG#: S7006 Inter [Shipped unter [Shipped unter [Shipped Intact] Broken [Intact
Receipt Details: Matrix	Container Type	# of Containers				
Page 21 of 21			Proceed With Analysis: Client Communication:	ysis: 🗍 YES 🗍 NO tion:	VO Init/Date:	CS Required:

g

Leaders in Analytical Science and Service

Subcontract Laboratory Report Attachments

2795 Second Street, Suite 300 Davis, CA 95618 tel 530.297.4800 fax 530.297.4808 www.kiffanalytical.com

WORK ORDER NUMBER: 13-12-1954

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Kiff Analytical Client Project Name: Pulp Mill Debris Pile Sampling Attention: Joel Kiff 2795 2nd Street, Suite 300 Davis, CA 95618-6505

Amande Porter

Approved for release on 01/03/2014 by: Amanda Porter Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

40 Lincoln Way, Garden Grove, CA 92841-1432 🔹 TEL: (714) 895-5494 🔹 FAX: (714) 894-7501 🔹 www.calscience.com

Client Project Name: Pulp Mill Debris Pile Sampling Work Order Number: 13-12-1954

1	Work Order Narrative	3
2	Client Sample Data	4 4
3	Quality Control Sample Data.3.1 MS/MSD.3.2 Sample Duplicate.3.3 LCS/LCSD.	6 6 7 8
4	Sample Analysis Summary	9
5	Glossary of Terms and Qualifiers	10
6	Chain of Custody/Sample Receipt Form	11

Contents

Calscience nvironmental Laboratories, Inc.

Work Order: 13-12-1954

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 12/27/13. They were assigned to Work Order 13-12-1954.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Calscience Environmen Laborator			Ana	alytical Rep	port				
Kiff Analytical				Date F	Received:				12/27/13
2795 2nd Street, Suite	e 300			Work	Order:				13-12-1954
Davis, CA 95618-650	5								
Project: Pulp Mill Deb	ris Pile Sampling	I						Page	1 of 2
Client Sample Number			Lab	Sample Number		Date/Tir	ne Collected	Matrix	
7174-AOI1-A			13-1	2-1954-1		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	Date Prepared	<u>Date</u> Analyzed	Method	
Sulfate	6000	100	10		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	12	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI1-B			13-1	2-1954-2		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	9000	200	20		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	7.5	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI1-C			13-1	2-1954-3		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	Date Prepared	<u>Date</u> Analyzed	Method	
Sulfate	5100	100	10		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	11	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI1-D			13-1	2-1954-4		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	14000	500	50		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	7.0	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI1-E			13-1	2-1954-5		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	5600	100	10		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	1.5	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI2-A			13-1	2-1954-6		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	490	10	1		mg/kg	12/31/13	12/31/13	EPA 300.0	
Sulfide, Total	1.5	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI2-B			13-1	2-1954-7		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DE	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	Date Analyzed	Method	
Sulfate	900	10	1		mg/kg	12/31/13	12/31/13	EPA 300.0	
Sulfide, Total	ND	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

_

nvironmental	Inc.		Ana	alytical Re	port				
Kiff Analytical				Date I			12/27/13		
2795 2nd Street, Suite 300			Work	Order:				13-12-1954	
Davis, CA 95618-6505									
Project: Pulp Mill Debris Pile	e Sampling	I						Page	e 2 of 2
Client Sample Number			Lab	Sample Number		Date/Tir	ne Collected	Matrix	
7174-AOI2-C			13-1	2-1954-8		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	480	10	1		mg/kg	12/31/13	12/31/13	EPA 300.0	
Sulfide, Total	2.5	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI2-D			13-1	2-1954-9		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	410	10	1		mg/kg	12/31/13	12/31/13	EPA 300.0	
Sulfide, Total	0.50	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
7174-AOI1-SP			13-1	2-1954-10		12/23/13	3 00:00	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Sulfate	1000	20	2		mg/kg	12/31/13	01/03/14	EPA 300.0	
Sulfide, Total	0.50	0.50	1		mg/kg	12/28/13	12/28/13	EPA 376.2M	
Method Blank						N/A		Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	

12/31/13

12/28/13

mg/kg

mg/kg

12/31/13

12/28/13

EPA 300.0

EPA 376.2M

ND

ND

10

0.50

1

1

alscience

Sulfate

Sulfide, Total

Page 1 of 1

Quality Control - Spike/Spike Duplicate

Kiff Analytical	Date Received:	12/27/13
2795 2nd Street, Suite 300	Work Order:	13-12-1954
Davis, CA 95618-6505	Preparation:	N/A
	Method:	EPA 300.0

Project: Pulp Mill Debris Pile Sampling

Quality Control Sample ID	Matrix		Instrument	Date P	repared	Date Analyzed	MS	MS/MSD Batch Number			
7174-AOI1-A		Solid		IC 7	12/31/	13	12/31/13 22:25	131	1231S02		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>	
Sulfate	5978	500.0	7286	4X	7297	4X	80-120	4X	0-20	Q	

Quality Control - Sample Duplicate

Kiff Analytical	Date Received:	12/27/13
2795 2nd Street, Suite 300	Work Order:	13-12-1954
Davis, CA 95618-6505	Preparation:	N/A
	Method:	EPA 376.2M
Project: Pulp Mill Debris Pile Sampling		Page 1 of 1

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
7174-AOI2-D	Solid	N/A	12/28/13 00:00	12/28/13 17:46	D1228SD1
Parameter	Sample Conc	<u>. DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Sulfide, Total	0.5000	0.5000	0	0-25	

RPD: Relative Percent Difference. CL: Control Limits

<i>Calscience</i> <i>nvironmental</i> <i>Laboratories, Inc.</i>	Quality Control - LCS	-
Kiff Analytical	Date Received:	12/27/13
2795 2nd Street, Suite 300	Work Order:	13-12-1954
Davis, CA 95618-6505	Preparation:	N/A
	Method:	EPA 300.0
Project: Pulp Mill Debris Pile Sampling		Page 1 of 1

Project: Pulp Mill Debris Pile Sampling

Quality Control Sample ID	Matrix	Instrument	Date Ana	lyzed	LCS Batch Number			
099-12-922-325	Solid	IC 7	12/31/13	19:25	131231L02			
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec.</u>	CL Qualifiers			
Sulfate	500.0	491.3	98	90-110)			

Page 8 of 14

Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 300.0	N/A	811	IC 7	1
EPA 376.2M	N/A	880	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Page 1 of 1

alscience nvironmental aboratories, Inc.

Work Order: 13-12-1954

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < Greater than the indicated value. > Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. Δ The MS/MSD RPD was out of control due to suspected matrix interference. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 5 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. Е Concentration exceeds the calibration range. FT Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis.

Glossary of Terms and Qualifiers

- Х % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	~	1	1 of 1	luest					λļu	0 98	sU c	סנ רש <u>ן</u> :	1	/	Ь	3	4	5	¢.	Ŧ	Ş	9	60		<u>ge 11</u>	
	13.12.105/		Page	Chain-of-Custody Record and Analysis Request		ŀ	IAT			sń	вQ	-7		×	×	×	×	×	×	×	X	X	×	t Detail.		-
	3-19		87006	I Analy																				Please refer to attached Test Detail		
	-		87(ord and			st																	r to attac		oldor
		7	COC No.	y Reco			Analysis Request																	ase refe		Accounte Doutlo
	Ž	Garden Grove, CA 92841-1427	-	Sustod			Analysi:																			10000
ence	oln Wa	A 928	194	in-of-C																				Remarks:	-	Bill to:
Calscience	7440 Lincoln Way	rove, C	714-895-5494	Cha						(I) 8	ns 0		A niệns by B Sulfide SL	×х	××	××	X X	X X	x x	х×	X X	XX	×х			
	744	den G	714-			tion:				Matrix																
		Gal		g		lete this sec							lios	×	×	×	×	×	×	×	×	×	×			
Suite 300						tory to comp	og Code:		(Email Address): alvtical.com	/ Preservative																boratory:
2795 Second Street Suite 300	5618	97.4800 27.4800	17.4808	Report?		Recommanded but not mandatory to complete this section:	Sampling Company Log Code:			er / Pres														Received by:	Received by:	Received by Laboratory
95 Secon	Davis, CA 95618	Lab: 530.297.4800	rax: 530.297.4808	EDF Re		ommended b	mpling C	Global ID:	Deliverables to nbox@kiffana	Container															/ 700 Time Rece	Time Rece
279	α Δ		19 19 19			Rec	ŝ	ō.		<u> </u>		enoN 28		~	-	-	~	←	~	~		-	- 		Date T	Date
								4808	87006			Sampling	Date T	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13	12/23/13		244	
				JF to):				FAX No.: 530-297-	P.O. No.: 87006			Š	ة ا	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	4	1 mcal rue	
		l I	TC V	opy or PI		-		53 53	P.C		pling			-										Mitt	64W	
	X T T T		rical L	ct (Hardc	es	fress:	ical	800	er:		: Pile Sam	SS:	ion	4	р Пр	γ	Ą	Ψ	4	m	ပု	Ą	-SP	×	×	×
			Inalyi	Project Contact (Hardcopy or PDF to):	Scott Forbes	Company/Address:	Kiff Analytical	Phone No.: 530-297-4800	Project Number: 7591 09	Project Name:	Pulp Mill Debris Pile Sampling	Project Address:	Sample Designation	7174-A011-A	7174-A011-B	7174-A011-C	7174-A0I1-D	7174-A011-E	7174-AOI2-A	7174-AOI2-B	7174-AOI2-C	7174-AOI2-D	7174-AOI1-SP	Relinquished by:	Relinquished by:	Relinquished by:

•

.

Return to Contents

. . .

Test Detail for Kiff Work Order: 87006

. .

Anions by EPA 300.0 SUB (1) Sulfate

.

•

•

Date Printed 12/26/2013

2795 2ND STREET 300

Shipped From:

KIFF ANALYTICAL

DAVIS, CA 95618

가지 않는 것 같은 그 옷이 있는 그

· · · .

Plagend off14

.

Tracking#D10010647476997

Sent By: SAMPLE RECEIVINGX125 Phone#: (530)297-4800 wgt(lbs): 40 Reference: SUBS Reference 2: 600

CALSCIENCE ENVIRONMENTAL LADS	Service: S Sort Code: ORG Special Services:
SAMPLE RECEIVING (714)095-5494	Signature Required

	/ORK ORDER #	: 13-1	Page 14	
Laboratories, Inc. SAMPLE RE	CEIPT FOR	M c	ooler <u>/</u>	of _/_
CLIENT: Kiff			12/27,	/ 13
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0	°C – 6.0 °C, not frozen	except se	diment/tissu	e)
Temperature • • C - 0.2 °C (CF) =	<u>1.7</u> °C z	Blank	🗌 Sample	•
Sample(s) outside temperature criteria (PM/APM contained)	acted by:).			
Sample(s) outside temperature criteria but received or	າ ice/chilled on same da	ay of sampli	ng.	
Received at ambient temperature, placed on ice	for transport by Co	urier.		
Ambient Temperature:			Checked b	y: <u>876</u>
CUSTODY SEALS INTACT:				5.0
Cooler O No (Not Intact)		🗆 N/A	Checked by	
□ Sample □ □ No (Not Intact)	Ø Not Present		Checked by	1: <u>1 * 0</u>
SAMPLE CONDITION:	· · · · · · · · · · · · · · · · · · ·	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with sa				
COC document(s) received complete		/	_ Z	
Collection date/time, matrix, and/or # of containers logged in			~	
□ No analysis requested. □ Not relinquished. □ No date				
Sampler's name indicated on COC	•••••			ø
Sample container label(s) consistent with COC	••••••			
Sample container(s) intact and good condition	· · · · · · · · · · · · · · · · · · ·	Į –		
Proper containers and sufficient volume for analyses n	equested	Ø		
Analyses received within holding time	.,.,,	Z		
Aqueous samples received within 15-minute holdin	g time			
🗆 pH 🛛 Residual Chlorine 🖓 Dissolved Sulfides 🖓 Dis	solved Oxygen			Ø
Proper preservation noted on COC or sample contained	≱r			Ø
Unpreserved vials received for Volatiles analysis				
Volatile analysis container(s) free of headspace				Ø
Tedlar bag(s) free of condensation				ø
Solid: ⊒4ozCGJ □8ozCGJ □16ozCGJ □Sleeve	() □EnCores	s [®] □Terra	Cores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □12	5AGBh ⊡125AGBp		∃1AGBna₂ []1AGB s
□500AGB □500AGJ □500AGJs □250AGB □25	50CGB □250CGB s	□1 PB	🗆 1 PBna 🖾	1500PB
□250PB □250PBn □125PB □125PBznna □100F				
Air: Tedlar [®] Canister Other: Trip Bla Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Zij Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ t	ploc/Resealable Bag E: En	velope h	(eviewed by:	451

.

SOP T100_090 (07/31/13)

Return to Contents

•••

MICRO ANALYTICAL LABORATORIES, INC. BULK ASBESTOS ANALYSIS - POLARIZED LIGHT MICROSCOPY (PLM)

1004 John Wellik LACO Associates 21 W. 4th Street Ukiah, CA 95501

PROJECT: PULP MILL DEBRIS SAMPLING JOB NO. 7174.20

Micro Log In

Total Samples Date Sampled 10/23/2013 Date Received 12/26/2013 Date Analyzed 12/28/2013

	SAMPLE IDENTIFICATION		QUANTITY (AREA %) / TYPES / LAYERS / DISTINCT SAMPLES	DOMINANT OTHER MATERIALS
Client #:	7174-A	01 1 CN		
Micro #: SOIL / DI		Analyst. MO	SOIL: NONE DETECTED	1 % FIBROUS GLASS
				Matrix ROCK FRAGMENTS, CLAY. Type:
Client #:	7174-/	A01 1 W		
Micro #. 1 SOIL / DI	189503-02	Analyst: MO	SOIL: NONE DETECTED	3 % FIBHOUS GLASS
3012721				Matrix ROCK FRAGMENTS, CLAY Type:
Client #:	7174-	A011E		
	189503-03	Analyst: MO	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SOIL / DI	EBRIS			Mairix ROCK FRAGMENTS, CLAY. Type:
Client #:	7174-A	01 1 CS	· · · · · · · · · · · · · · · · · · ·	
	89503-04	Analyst: MO	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SQIL / DI	EBRIS			Matrix ROCK FRAGMENTS, CLAY Type:
Client #:	7174-/	401 2 S		
		Analyst: MO LZ	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SOIL / DI	ābais			Mainx ROCK PRAGMENTS, CLAY. Type:

Technical Supervisor:

Gamini Ranatunga, Ph.D. 6

12/29/2013 Date Reported

Analyses use Polarized Light Microscopy (PLM), Micro Analytical SOP PLM-101 (Rev. 1/4/2013). Basic techniques follow the EPA Interim Method for Bulk Insulation Samples (1982), and EPA-600/R93-116 (1993). The 1993 method covers all types of bulk materials and is based on the 1982 Method, with improved analytical techniques for layered samples as required for NESHAP compliance. Asbestos is quantified by calibrated visual estimation. Detection limit is material dependent. Detection of asbestos traces (much less than 1%) may not be reliable or reproducible by PLM. Weight % cannot be determined by PLM. Asbestos with diameter below ~1 µm may not be detected by PLM. Absence of asbestos in dust, debris, and some compact materials, including floor tiles, cannot be conclusively established by PLM, and should be confirmed by TEM. The lower quantitation limit (reporting limit) of PLM estimation is 1%. The Cal-OSHA definition of asbestos containing construction materials are showned. Only dominant non-adhesitos amended. Only dominant non-adhesitos amended. Interventing and is abestos may devent detection of asbestos are grouped. recommended. Only dominant non-asbestos materials are indicated. Interferences may prevent detection of small asbestos fibers, and hinder determination of some optical properties. Sample heterogeneity is indicated by listing more than one distinct layer or material on the report. Layers are analyzed separately when feasible; if asbestos fibers, and hinder determination of some optical percentages are reported for individual layers. Interlayer contamination is possible among any layers in a sample. The notation ND (or "NONE DETECTED") indicates a result of "NO ASBESTOS DETECTED" in a homogeneous sample, or in all layers of a heterogeneous sample Composite asbestos fibers from multiple layers are applicable only to wallboard / joint compound systems; compositing is based on customers' descriptions of material as "joint compound". Customers are solely responsible for identification and elemined to be within accelerate links prior theorem in the reporting. Samples that were analyzed are applicable only two estens of analytication of bulk materials listed on field forms. Laboratory descriptions may differ from those given by customers. Quality Control (QC): all results have been determined to be within accelerate. within acceptance limits prior to reporting. Samples that were reanalyzed are denoted by two sets of analyst initials. AlHA Accredited Laboratory ID No. 101768. NVLAP Lab Code 101872-0. CA ELAP Certification #1037. Unless otherwise stated herein, all samples were received in acceptable condition for analysis. This report must not be used to claim product endorsement by NIST or any U.S. Government agency. This report shall not be reproduced except in full without the approval of Micro Analytical Laboratories, Inc., and pertains only to the samples analyzed.

6900 HOLLIS STREET, SUITE M - EMERYVILLE, CA 94608 - (510) 653-0824

ASSESTOS INFORMATION

10

189503

-

MICRO ANALYTICAL LABORATORIES, INC. BULK ASBESTOS ANALYSIS - POLARIZED LIGHT MICROSCOPY (PLM)

1004 John Wellik LACO Associates 21 W. 4th Street Ukiah, CA 95501

PROJECT: PULP MILL DEBRIS SAMPLING JOB NO. 7174.20

Micro Log In	189503
Total Samples	10

10/23/2013 Date Sampled Date Received 12/26/2013 12/28/2013 Date Analyzed

	SAMPLE IDENTIFICATION	QUANTITY (AREA %) / TYPES / LAYERS / DISTINCT SAMPLES	DOMINANT OTHER MATERIALS
Client #:	7174-A01 2 W	_	-
Micro #: 18	9503-06 Analyst: мо	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SQIL / DEB	RIS		Matrix BOCK FRAGMENTS, CLAY. Type:
Client #:	7174-A01 2 E		
Micro #: 18	9503-07 Analyst: MO	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SOIL / DEB	RIŞ		Mairix ROCK FRAGMENTS, CLAY. Type:
Client #:	7174-A01 1 N		
Micro #: 18	9503-08 Analyst: MO	SOIL: NONE DETECTED	1 % FIBROUS GLASS
SOIL / DEB	RIS		Matnx ROCK FRAGMENTS, CLAY. Type:
Client #:	7174-A01 1 N		
Micro #: 18	9503-09 Analyst: MO	SOIL / DEBRIS: NONE DETECTED	1 % FIBROUS GLASS
AQI 1 DEBI	NS PILE 2		Matrix ROCK FRAGMENTS, CLAY. Type:
Client #:	7174-A01 S		
Micro #: 18	9503-10 Analyst: MO	SOIL / DEBRIS: NONE DETECTED	2 % FIBROUS GLASS
AQI1 DEBI	tis Pile 2		Matrix ROCK FRAGMENTS, CLAY. Type:

ស៊ 🛴 Gamini Ranatunga, Ph.D

12/30/2013 Date Reported

Technical Supervisor:

Analyses use Polarized Light Microscopy (PLM), Micro Analytical SOP PLM-101 (Rev. 1/4/2013). Basic techniques follow the EPA interim Method for Bulk Insulation Samples (1962), and EPA-600/R93-116 (1993). The 1963 method covers all types of bulk materials and is based on the 1962 Method, with improved analytical techniques for layered samples as required for NESHAP compliance. Asbestos is guantified by calibrated visual estimation. Detection limit is material dependent. Detection of asbestos traces (much less than 1%) may not be reliable or reproducible by PLM. Weight % cannol be determined by PLM. Asbestos with diameter below ~1 µm may not be detected by PLM. Absence of asbestos in dust, debris, and some compact materiats, including floor tiles, cannol be conclusively established by PLM, and should be confirmed by Transmission Electron Microscopy (TEM). Thremolite-asbestos or actinolite- asbestos may be indistinguishable by PLM from some similar, non-regulated amphiboles (e.g. Ihe "Libby Amphiboles" incluerity and entities and winchte), and be confirmed by TEM. The lower quantitation limit (reporting limit) of PLM estimation is 1%. The Cal-OSHA definition of asbestos-containing construction material is 0.1% asbestos; however, reliable determination of asbestos procent at this level cannol be done by PLM estimation; PLM Point Counting or TEM weight percent analysis are recommended. Only dominant non-asbestos materials are Intelfaced. Interferences may prevent detection of small asbestos fibers, and hinder determination of some optical percentages are reported for individual layers. Interlayer contamination is possible among any layers in a sample. The notation ND (or "NONE DETECTED") indicates a result of "NO ASBESTOS DETECTED" in a homogeneous sample, or in all layers of a heterogeneous sample. Composite asbestos percentages from multiple layers are applicable only to identification and description of bulk materials listed on field forms. Laboratory descriptions may differ from those given by customers. Quality endorsement by NIST or any U.S. Government agency. This report shall not be reproduced except in full without the approval of Micro Analytical Laboratories, Inc., and pertains only to the samples analyzed.

5900 HOLLIS STREET, SUITE M - EMERYVILLE, CA 94608 - (510) 653-0824

LODGOTOO INCODINTION

ULLAR OTHER SPACEFORM

Client ID #

Name / Client / Address:

MICRO ANALYTICAL LABORATORIES, INC.

5900 Hollis St., Suite M, Emeryville, CA 94608 (510) 653-0624 - (510) 653-1361 - FAX

	Pulp Mill D Job No. 7174.20 Description SOIL/DEBRIS	pebris Sampli Debris Sampli Date Sampl		Lead Only Metals	Samples Average		round Time
nple ID#	Job No. 7174.20 Description SOIL/DEBRIS	Date		Asbestos Lead Only Metals (Specify) Mold, Non- Other (Specify) Number of 10	Viable Samples Average	Tum-A	round Tim
nple ID#	Job No. 7174.20 Description SOIL/DEBRIS	Date Sample	 	Metals (Specify) Mold, Non- Other (Specify) Number of 10	Viable Samples Average	Tum-A	round Tim
nple ID#	Description SOIL/DEBRIS	Date Sample		Metals (Specify) Mold, Non- Other (Specify) Number of 10	Viable Samples Average	Tum-A	round Tim
nple ID#	Description SOIL/DEBRIS	Date Sample		Mold, Non- Other (Specify) _ Number of 10 ime Sampled Start / Stop /	Viable Samples Average	Tum-A	round Tim
nple ID#	Description SOIL/DEBRIS	Date Sample		Other (Specify) _ Number of 10 ime Sampled Start / Stop /	Samples Average	Turn-A	
nple ID#	Description SOIL/DEBRIS	Date Sample		(Specify) _ Number of 10 ime Sampled Start / Stop /	Samples Average	Turn-A	
1 CN ⁸	Description SOIL/DEBRIS	Date Sample		10 ime Sampled Start / Stop /	Average		
1 CN ⁸	SOIL/DEBRIS	Sample		Start / Stop /	Average		
		12/23/20			LPM	Total Liters	Filter Pore Size
11W ^s			13	0		0.00	
	SOIL/DEBRIS	12/23/20	3	<u> </u>		0.00	
11E ^s	OIL/DEBRIS	12/23/20	3			0.00	
1 CS ^S	OIL/DEBRIS	12/23/20	3			0.00	
125 5	OIL/DEBRIS	12/23/20	3	0	†	0.00	†
2 W S	OIL/DEBRIS	12/23/201	3 <u> </u>	:		0.00	
12E ^S	OIL/DEBRIS	12/23/201	, <u> </u>			0.00	
12 N S	OIL/DEBRIS	12/23/201	3 :	:		0.00	
11N ^A	OI 1 DEBRIS PILE 2	12/23/201	3	0		0.00	
1 S A	OI 1 DEBRIS PILE 2	12/23/201	,:	0		0.00	
	Fax 🖌 E-mail To: W	ellikje F	lac		wfes,	com	·]
	2 W S 2 E S 2 N S 1 N A 1 S A	2 W SOIL/DEBRIS 2 E SOIL/DEBRIS 2 E SOIL/DEBRIS 2 N SOIL/DEBRIS 1 N AOI 1 DEBRIS PILE 2 1 S AOI 1 DEBRIS PILE 2 Fax Z E-mail To: W	12/23/201 2 W SOIL/DEBRIS 2 E SOIL/DEBRIS 12/23/201 2 N SOIL/DEBRIS 12/23/201 1 N AOI 1 DEBRIS PILE 2 1 S AOI 1 DEBRIS PILE 2 12/23/2013 1 S AOI 1 DEBRIS PILE 2 12/23/2013 1 S AOI 1 DEBRIS PILE 2 12/23/2013	12/23/2013 12/23/2013 2 W SOIL/DEBRIS 12/23/2013 2 E SOIL/DEBRIS 12/23/2013 2 N SOIL/DEBRIS 12/23/2013 1 N AOI 1 DEBRIS PILE 2 12/23/2013 1 S AOI 1 DEBRIS PILE 2 12/23/2013 Fax \checkmark E-mail To: we Uik/C Image: Constraint of the constr	12/23/2013 12/23/2013 0 2 W SOIL/DEBRIS 12/23/2013 0 2 E SOIL/DEBRIS 12/23/2013 0 2 N SOIL/DEBRIS 12/23/2013 0 2 N SOIL/DEBRIS 12/23/2013 0 1 N AOI 1 DEBRIS PILE 2 12/23/2013 0 1 S AOI 1 DEBRIS PILE 2 12/23/2013 0 1 S AOI 1 DEBRIS PILE 2 12/23/2013 0 5 Fax V E-mail To: We Wik/C In a co associ	12/23/2013 12/23/2013 0 2 W SOIL/DEBRIS 12/23/2013 1 2 E SOIL/DEBRIS 12/23/2013 0 2 N SOIL/DEBRIS 12/23/2013 0 2 N SOIL/DEBRIS 12/23/2013 0 1 N AOI 1 DEBRIS PILE 2 12/23/2013 1 1 1 S AOI 1 DEBRIS PILE 2 12/23/2013 0 1	12/23/2013 12/23/2013 0 0.00 2 W SOIL/DEBRIS 12/23/2013 1 1 0 2 E SOIL/DEBRIS 12/23/2013 1 1 0 0.00 2 E SOIL/DEBRIS 12/23/2013 1 1 0 0.00 2 N SOIL/DEBRIS 12/23/2013 1 1 0.00 1 N AOI 1 DEBRIS PILE 2 12/23/2013 1 1 0.00 1 S AOI 1 DEBRIS PILE 2 12/23/2013 1 1 0.00 1 S AOI 1 DEBRIS PILE 2 12/23/2013 1 1 0.00 1 S AOI 1 DEBRIS PILE 2 12/23/2013 1 1 0.00 1 S AOI 1 DEBRIS PILE 2 12/23/2013 0 0.00 1 S Fax V E-mail To: Wellik/C Explanation (A concord associal fields), communication (A concord asso

sampler's Signature / Name	Note to Lab: If any samples are not acce	ptable, record reasons for rejection.
John Wellik	Drop Box / Courier	•
Relinguished By	Date / Time Received By 12/23/13 1530	Date / Time
	Date/Time Received By	12/23/13_(S Date/Time
	Fec.M 11m	12612 III

Draft Analysis of Brownfields Cleanup Alternatives HBHRCD Redwood Terminal 2, Samoa, California County of Humboldt

APPENDIX 3

Laboratory Testing Results Summary Table

LACO

							Scree	ning Level	S			
		Sample	Direct Ex	kposure ₁	Terrestria	I Exposure ₁	Ceil	ing ₁	Leac	hing ₁		TTLC1
Constituent		Location	Res.	Com./ Ind.	Res.	Com./ Ind.	Res.	Com./ Ind.	Res.	Com./ Ind.	TTLC	STLC X 10
	SL (n	ng/kg)	78	1,000	12	12	1,000	2,500	NV	NV	100	10
Cadmium	Concentration	AOI 1 Pile 1					6.9 to	o 3.8 mg/kg	3			
Caumum	Concentration Range	AOI 1 Pile 2					0.7	75 mg/kg				
		AOI 2 Pile 1					2.7 to	o 1.0 mg/kg	5			
	SL (mg/kg)		120,000	1,500,000	750	750	1,000	2,500	NV	NV	2,500	50
Ch		AOI 1 Pile 1					740 to	o 180 mg/k	g			
Chromium III	Concentration Range	AOI 1 Pile 2					10	0 mg/kg				
	Nange	AOI 2 Pile 1					110 t	o 61 mg/kg	g			
	SL (mg/kg)		80	320	200	NV	1,000	2,500	NV	NV	1,000	50
	Concentration Range	AOI 1 Pile 1					90 to	o 44 mg/kg				
Lead		AOI 1 Pile 2					2	9 mg/kg				
		AOI 2 Pile 1					33,000 t	o 2,300 mg	g/kg			
	SL (mg/kg)		1,500	17,000	150	150	1,000	2,500	NV	NV	2,000	200
N	Concentration Range	AOI 1 Pile 1					490 to	o 190 mg/k	g			
Nickel		AOI 1 Pile 2					7.	2 mg/kg				
		AOI 2 Pile 1					85 to	o 50 mg/kg				
	SL (mg/kg)		23,000	310,000	600	600	1,000	2,500	NV	NV	5,000	2,500
		AOI 1 Pile 1					1,000 t	:o 650 mg/	kg			
Zinc	Concentration Range	AOI 1 Pile 2					2,1	00 mg/kg				
	Nalige	AOI 2 Pile 1					840 to	o 510 mg/k	g			
	SL (mg/kg)		3,900	12,000	NV	NV	100	5,000	83	530		
		AOI 1 Pile 1				480 to 27	0 mg/kg					
TPHd	Concentration	AOI 1 Pile 2				72 m	g/kg					
	Range	AOI 2 Pile 1				130 to 5	7 mg/kg				-	
	SL (mg/kg)		120,000	1,200,000	NV	NV	500	5,000	NV	NV		
		AOI 1 Pile 1				2,200 to 1,2	200 mg/kg					
TPHmo	Concentration	AOI 1 Pile 2				300 m	ng/kg					
	Range	AOI 2 Pile 1				550 to 21						

SL = Screening Level, NV = No Value provided; **bold** indicates concentration exceeds SL

Res. = Residential; Com./Ind. = Commercial/Industrial

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

1. Screening Level values derived from San Francisco Bay Regional Water Quality Control Board Environmental Screening Level Workbook

2. California Environmental Protection Agency

.

Draft Analysis of Brownfields Cleanup Alternatives HBHRCD Redwood Terminal 2, Samoa, California County of Humboldt

APPENDIX 4

Cost Comparisons Table

Draft Analysis of Brownfields Cleanup Alternatives HBHRCD Redwood Terminal 2, Samoa, California County of Humboldt

Debris Pile ID	Source	Volume (yd³)	Mass (tons)	Cost Estimate Alt 2A (AOI 1 to Class II, AOI 2 to Class I)	Cost Estimate Alt 2B (All debris to Class I)	Cost Estimate Alt 3A (25% AOI 1 to Class II, 25% AOI 2 to Class I, remainder on-site)	Cost Estimate Alt 3B (25% AOI 1 to Class II, 50% AOI 2 to Class I, remainder on-site)	Cost Estimate Alt 3C (25% AOI 1 to Class II, 75% AOI 2 to Class I, remainder on-site)
AOI 1 Pile 1	Recovery Boilers 1 and 2	1,182	1,546	\$231,900	\$386,500	\$66,840	\$66,840	\$66,840
AOI 1 Pile 2	Imported Sand Pile	141	140	\$21,000	\$35,000	\$6,308	\$6,308	\$6,308
AOI 2 Pile 1	Digester/ASTs	1,080	1,661	\$415,250	\$415,250	\$111,913	\$213,025	\$314,138
	NCRWQCB Waste Discharge Permit			\$0	\$0	\$20,000	\$20,000	\$20,000
	Humboldt County Grading Permit			\$0	\$0	\$5,000	\$5,000	\$5,000
	On-site Disposal Analysis			\$0	\$0	\$10,000	\$10,000	\$10,000
	TOTALS	2,403	3,347	\$668,150	\$836,750	\$220,060	\$321,173	\$422,285

Debris Pile Sampling Results and Screening Levels

Appendix B

				Observed Cor		ebris Piles and S om LACO 2014)		ls						
			Direct H	Exposure		l Exposure		iling	Lea	ching	Т	ITLC ¹		
Constituent	Range	Location	Residential	Commercial /Industrial	Residential	Commercial /Industrial	Residential	Commercial /Industrial	Residential	Commercial /Industrial	TTL C	STLC ² x10		
	Screening Level	(mg/kg) ³	78	1,000	12	12	1,000	2,500	NV ⁴	NV	100	10		
Cadmium	Concentration	AOI #1 Pile #1					3.8 to 6.9	9						
Caumium	Range	AOI #1 Pile #2					0.75							
	(mg/kg)	AOI #2 Pile #3					1.0 to 2.2	7						
	Screening Level	(mg/kg)	120,000	1,500,000	750	750	1,000	2,500	NV	NV	2,500	50		
Chromium	Concentration	AOI #1 Pile #1					180 to 74	0						
III	Range	AOI #1 Pile #2					100							
	(mg/kg)	AOI #2 Pile #3					61 to 11	0						
	Screening Level	(mg/kg)	80	320	200	NV	1,000	2,500	NV	NV	1,000	50		
Lead	Concentration Range (mg/kg)	AOI #1 Pile #1		44 to 90										
		AOI #1 Pile #2					29							
		AOI #2 Pile #3					2,300 to 33,	.000						
	Screening Level	(mg/kg)	1,500	17,000	150	150	1,000	2,500	NV	NV	2,000	200		
NT: 1 1	Concentration . Range	AOI #1 Pile #1					190 to 4 9	0						
Nickel		AOI #1 Pile #2					72							
	(mg/kg)	AOI #2 Pile #3					50 to 85	;						
	Screening Level	(mg/kg)	23,000	310,000	600	600	1,000	2,500	NV	NV	5,000	2,500		
Zinc	Concentration	AOI #1 Pile #1					650 to 1,0	00						
ZIIIC	Range	AOI #1 Pile #2					2,100							
	(mg/kg)	AOI #2 Pile #3					510 to 84	0						
	Screening Level	(mg/kg)	3,900	12,000	NV	NV	100	5,000	83	530	NV	NV		
TPHd	Concentration	AOI #1 Pile #1					270 to 48	0						
m	Range	AOI #1 Pile #2					72							
	(mg/kg)	AOI #2 Pile #3					27 to 13	0						
	Screening Level	(mg/kg)	120,000	1,200,000	NV	NV	500	5,000	NV	NV	NV	NV		
	Concentration	AOI #1 Pile #1					1,200 to 2,2	200						
TPHmo	Range	AOI #1 Pile #2					300							
	(mg/kg)	AOI #2 Pile #3					210 to 55	0						
tems in bold		Concentration ation above the scr from San Francisc	eening level.	uble Threshold				is per kilogram	4. NV: No V	/alue				

 $\label{eq:linear} \label{eq:linear} \label{eq:linear} We a label{eq:linear} where \label{eq:linear} \label{eq:linear}$

Appendix C Cost Estimates

Table C-1Estimated Costs for Alternative 2								
Remove Sand from Cell	\$ 10,000							
Design Final Cover System	\$ 30,000							
Restore and Reconstruct Final Cover System	\$ 100,000							
Disposal Analysis	\$ 10,000							
Permitting	\$ 150,000							
Total	\$ 300,000							

	Preli	minary Co		ole C-2 ate for Alter	natives 3 and	14		
Debris Pile ID	Source	Volume (yd³)	Mass (tons)	Full Class I Disposal	AOI #1 to Class II, AOI II to Class I	25% AOI I to Class II, 25% AOI II to Class I	25% AOI I to Class II, 50% AOI II to Class I	25% AOI I to Class II, 75% AOI II to Class I
AOI #1 Pile 1	Recovery Boilers 1 and 2	1,182	1,546	\$ 425,200	\$ 264,000	\$ 66,000	\$ 66,000	\$ 66,000
AOI #1 Pile 2	Imported Sand Pile	141	140	\$ 39,000	\$ 24,000	\$ 6,000	\$ 6,000	\$ 6,000
AOI #2 Pile 1	Digester/ASTs	1,080	1,661	\$ 456,800	\$ 457,000	\$ 114,500	\$ 228,500	\$ 311,500
	NCRWQCB Waste Discharge Permit			\$-	\$-	\$ 22,000	\$ 22,000	\$ 22,000
	Humboldt County Grading Permit			\$ -	\$ -	\$ 5,500	\$ 5,500	\$ 5,500
	On-Site Disposal Analysis			\$-	\$-	\$ 11,000	\$ 11,000	\$ 10,000
	Totals	2,403	3,347	\$ 921,000	\$ 745,000	\$ 225,000	\$ 339,000	\$ 421,000

 $\label{eq:construct} where the the the term of term$

		Table C-3				
Prelin	ninary Cos	st Estimate for	r Alternative	4		
Budget Categories	Task 1. Prepare Plans	Task 2. Implement Plans	Task 3. Coordinate Disposal	Task 4. Engage Community	Task 5. Manage Project	Totals
* District Personnel	\$4,800	\$1,200	\$2,400	\$1,200	\$1,200	\$10,800
* Consultant Personnel	\$9,600	\$4,800	\$3,600	\$2,400	\$2,400	\$22,800
* Contractual – General Contractors		\$7,500	\$10,000			\$17,500
* Contractual – Analytical Lab, Petroleum		\$4,750				\$4,750
* Contractual – Analytic Lab, Metals and Solvents		\$2,125				\$2,125
Contractual – Transport and Disposal Class I			\$137,500			\$137,500
Contractual – Transport and Disposal Class II			\$97,500			\$97 <i>,</i> 500
Total Federal Funding, not to exceed \$200,000			\$200,000			\$200,000
* Cost Share, minimum 20% of requested Federal funds	\$14,400	\$20,375	\$51,000	\$3,600	\$3,600	\$92,975
Total Budget						\$292,975

